Moa Documentation

Release 0.11.0

Mark Fiers

May 25, 2012
CONTENTS

1 Quick links 3

2 Table of contents: 5
 2.1 Goals ... 5
 2.2 Introduction .. 5
 2.3 Installation ... 7
 2.4 Three core templates 10
 2.5 Synchronizing jobs 11
 2.6 How to write a template 12
 2.7 Command reference 15
 2.8 Templates ... 25
 2.9 Moa API .. 147

3 More information 167

4 Indices and tables 169

Python Module Index 171

Index 173
Lightweight, command line, workflows for bioinformatics

Moa aims to assist a bioinformatician to organize, document, share, execute and repeat workflows in a command line environment without losing any of the flexibility of the command line, and, at all times giving the user full access to all aspects of the workflow (see also Goals).

NOTE: both the software and the manual are under development. Things might change.
CHAPTER ONE

QUICK LINKS

- Source code: https://github.com/mfiers/Moa
- Issue tracker: https://github.com/mfiers/Moa/issues
- Old issue tracker <http://moamoa.lighthouseapp.com/projects/73665-moa/overview>
- Python Package Index: http://pypi.python.org/pypi/moa/ (note - this is not updated regularly - might not work)
- Source code at Github
- PDF version of the manual
2.1 Goals

Moa has as objective to assist in keeping a bioinformatics project:

- **Organized:**
 Moa facilitates project organization in many (smaller and more major) ways, for example by providing a uniform way to capture commands as Moa jobs. Each Moa job is linked to a specific directory, and has all configuration, templates, data, and intermediate data available as files in this directory structure.

- **Documented:**
 Moa provides the possibility to add a title, description and changelogs to each job.

- **Reproducible:**
 By having all templates and configuration copied into a workflow - the workflow does never change (unless the user wants it to), even if templates in the repository change. Moreover, all templates are easy to find & inspect so it is always clear what happened.

- **Reusable & Shareable:**
 Moa provides reusable templates. New templates are easy to create, adapt and share. Workflows can be archived and reused with different data.

- **Flexible:**
 Moa provides a good number of hooks to insert custom code into a workflow, making that code part of the workflow. This ensures maximum flexibility.

2.2 Introduction

These days, generating massive amounts of data is an everyday element of biological research; and almost all projects have a computational biology, or bioinformatics, components. Such embedded work commonly consists of chaining a number of 3rd party tools together, often with some data manipulation in between the steps. It is important to have such projects properly organized, particularly when a project grows bigger.

There are many different ways to organize bioinformatics projects. Many bioinformaticians use the command line or tailor made scripts to organize and automate their work. This approach has obvi-
ous advantages, most importantly flexibility. Potential downsides to scripting are that a project easily becomes disorganized and untraceable unless measures are taken.

Moa aims to assist in organizing, automating and maintaining a command line bioinformatics project without loss of flexibility.

2.2.1 Example

The best way to understand how Moa can help you to achieve this is by an example. A Moa workflow consists of separate Moa jobs. A workflow is typically organized as a directory tree, where the structure of the tree reflects the structure of the project. So, Starting a Moa project starts with outlining a directory structure to contain the workflow:

```
$ mkdir test.project && cd test.project
$ mkdir 00.proteins
( copy or link some protein sequences into 00.proteins )
$ mkdir 10.blast
$ cd 10.blast
```

An important feature of Moa is that each separate analysis step is contained within a separate directory. Two Moa jobs never share a directory. This forces a Moa user to break a workflow down to atomic parts, which is typically beneficial to the organization and coherence of a workflow. The order of steps is easily ordered by prefixing directory names with a number. Note that these prefixes are not enforced by Moa; any alphabetical organization would work as well. Once a directory is created, a Moa job can be created:

```
$ moa new blast -t "demo run"
```

All interaction with Moa is done through a single command: `moa`. It is, at all times, possible to get help on the use of the `moa` command by invoking `moa --help`. The command above creates a **BLAST** job titled “demo run” in the current directory. All Moa related files are stored in a (hidden) sub-directory names `.moa` (have a look!). A Moa job consists, amongst others, of a configuration file and a number of template files. All template files are copied into the `.moa` directory. This ensures that a workflow remains the same over time, even if the templates are updated (`moa refresh` would update a template to the latest version).

Another topic in which Moa tries to help is by embedding (some) documentation. In the above command line the `-t` parameter sets a mandatory project title (a job won’t execute without a title).

Obviously, telling a Moa job to do a BLAST analysis is not enough, some extra information will need to be given:

```
$ moa set db=/data/blast/db/nr
```

A few things could be noted here. Important is that you do not use spaces around the `=` sign. If you want to define a parameter with spaces, use quotes (key="value with spaces"), and be aware of bash interpretation. A safe way of entering complex parameters is by running `moa set db` and Moa will query you the value.

Another point is that Moa does not give you a response. You can check the current job configuration using `moa show`, which would at this moment result in something resembling:
Note the variable `db` and `title`, which were set earlier. If you run `show -a`, more parameters will be revealed, amongst which is `program`. We will now set two more variables:

```bash
$ moa set program=blastp
$ moa set input=../00.proteins/*.fasta
```

The last statement defines the input files to blast. Once all is set you can actually run the BLAST analysis with:

```bash
$ moa run
```

Now Moa performs the BLAST analysis on the input files. The output can be found in the `out` subdirectory. As an extra, the Moa `blast` template generates a `blast_report` file with simple one line report for the best five hits of each query sequence. If you, for example, would like to check for the presence of dicer genes in your query set, you could `grep` this file:

```bash
$ grep -i dicer blast_report
```

Command line operation of data files can be very powerful, and this would be a typical operation for a command line bioinformatician. Moa lets you capture this and thus make it a part of the pipeline. Try:

```bash
$ moa set postcommand
```

and, at the prompt enter:

```
postcommand:
> grep -i dicer blast_report > dicer.out
```

If you now rerun `moa`, the BLAST job will not be repeated, but the `postcommand` will be executed and a `dicer.out` file will be generated. (note, there is also a `precommand`)

2.3 Installation

2.3.1 Prerequisites

Moa is developed and tested on Ubuntu and RHEL and is expected to operate without much problems on all modern Linux distributions. Moa has the following prerequisites (and a large number more for all templates). Version numbers are an indication, not strict prerequisites. Other, even older, versions might work.

- **Python (2.6 or 2.7).** Moa will not work with versions earlier, or with 3.0 and up
- **Git (1.6).** Necessary either to download the Moa software from github, or, to make use of the integrated version control.
- A number of support scripts & templates depend on Biopython. Consider installing it before starting to use Moa.
- **Python-dev:** the Python development package. A few prerequisites installed by easy_install try to compile C libraries, and need this. Although all of them have backup, python only, alternatives; from a performance perspective it is probably smart to have this installed:
sudo apt-get install python-dev

- *python-yaml*: On ubuntu, this installs a fast YAML parser - using easy_install or pip might install a slower, python only, version:

 sudo apt-get install python-yaml

2.3.2 Python prerequisites

These prereqs can be installed manually or with `easy_install` or `pip`:

- pyyaml (unless already installed)
- Jinja2
- Ruffus
- gitpython
- `unittest2 http://pypi.python.org/pypi/unittest2`
- `lockfile http://pypi.python.org/pypi/lockfile`

Not part of the list of prerequisites are the following libraries, which you’ll only need if you are planning to run the web interface:

- ElementTree
- Markdown

2.3.3 Bioinformatics tools

Each of the wrapped tools requires the tools to be present. Usually, Moa expects all tools to be present & executable on the system PATH. The standard Moa distribution comes with wrappers for:

- Blast
- BWA
- Bowtie
- Soap

and many more

2.3.4 Installing git (from github)

Moa is hosted on, and can be installed from, github:

```
cd ~
git clone git://github.com/mfiers/Moa.git moa
```

Note - their is also a copy of moa in the python package index - this one is almost certainly outdated, and is currently not supported.
2.3.5 Configuration

Configuration of Moa is simple, and can be done by sourcing the `moainit` script:

```
. ~/moa/bin/moainit
```

(Note the dot!, alternatively use: `source ~/moa/bin/moainit`)

It is probably a good idea to add this line to your `~/.bashrc` for future sessions.

Moa should now work, try `moa -help`.

If your default python version is NOT `python2.6` or `python2.7` there are a few options that you can pursue:

- change the hashbang of the `moa` script
- define an alias in your `~/.bashrc`: `alias moa='python2.6 moa'
- create a symlink to python2.6 in your `~/bin` directory and make sure that that is first in your path.

2.3.6 Installing the web interface

Note - this is highly experimental - you will probably need to fiddle with the configuration files to get it working. Start with installing apache2.

Then - assuming that:

* Your Moa work directory is under `/home/moa/work`
* Your Moa is installed in `/opt/moa`

Create a file in `/etc/apache2/conf.d/moa.conf` with the following approximate contents:

```
Alias /moa/data /home/moa/work
<Directory /home/moa/work>
  Options +Indexes +FollowSymLinks
  Order allow,deny
  Allow from all
  SetEnv MOADATAROOT /home/moa/work
  SetEnv MOAWEBROOT /moa/data
  IndexOptions FoldersFirst SuppressRules HTMLTable IconHeight=24 SuppressHTMLPreamble SuppressColumnSorting SuppressDescription
  HeaderName /moa/cgi/indexHeader.cgi
  ReadmeName /moa/html/indexFooter.html
</Directory>

ScriptAlias /moa/cgi/ /opt/moa/www/cgi/
<Directory /opt/moa/www/cgi/>
  AddType text/html .cgi
  Order allow,deny
  Allow from all
  SetEnv MOABASE /opt/moa
</Directory>

<Directory /opt/moa/www/html>
  Order allow,deny
  Allow from all
  Options +Indexes
</Directory>
```
You might want to check the #! of /opt/moa/www/cgi/indexHeader.cgi depending on your system configuration. Restart apache and it should work.

2.4 Three core templates

Moa comes with a list of templates (see templates). The three most important, flexible templates of these that allow you to embed custom code (called process) in your project are:

simple:

Simply executes process as a bash one-liner

map:

Takes a set of in- and output files and executes the custom commands for each in- and output file (using the Jinja2 template language).

reduce:

Takes a set of input files and a single output file and executes the custom commands with all input file, generating the output files.

Since simple, map and reduce have proven to be quite central to how Moa operates they come with their own shortcut commands (moa simple, moa map and moa reduce). These command query the user directly for the parameters instead of having to define this manually.

For example, a simple job:

```bash
$ mkdir simple_test && cd simple_test
$ moa simple -t 'Generate some files'
process:
  > for x in 'seq 1 5'; do touch test.$x; done
$ moa run
$ ls
test.1  test.2  test.3  test.4  test.5
```

Note that you can make your process as complicated as you like. Alternatively, you can write a script that you call from process.

A map job would work like this:

```bash
$ mkdir ../map_test && cd ../map_test
$ moa map -t 'Map some files'
process:
  > echo {{ input }} ; echo {{ input }} > {{ output }}
input:
  > ../simple_test/test.*
output:
  > ../out.*
$ moa run
../simple_test/test.3
../simple_test/test.1
../simple_test/test.5
../simple_test/test.2
../simple_test/test.
Moa: Success executing "run" (<1 sec)
$ ls
out.1 out.2 out.3 out.4 out.5
```
And a reduce example:

$ mkdir ../reduce_test && cd ../reduce_test
$ moa reduce -t 'Reduce some files'
process:
 > echo {{ " ".join(input) }} >> {{ output }}
input:
 > ../map_test/out.*
output:
 > ./reduce_out
$ moa run
Moa: Success executing "run" (<1 sec)
$ ls
reduce_out
$ cat reduce_out
../map_test/out.1 ../map_test/out.3 ../map_test/out.4 ../map_test/out.5 ../map_test/out.2

2.5 Synchronizing jobs

It is quite often useful to repeat a jobs on a number of different input files. For simple operations, one liners, this can be accomplished using moa map. More complex operations, or those requiring a template other than map can be replicated using job synchronization. Assume you have a set of fastq libraries, each in its own directory:

./fq/set1/set1_1.fq
./fq/set1/set1_2.fq
./fq/set2/set2_1.fq
./fq/set2/set2_2.fq
./fq/set3/set3_1.fq
./fq/set3/set3_2.fq

And you want to run a bowtie alignment for each separately. The approach to take is to create a directory containing all alignments:

mkdir bowtie
cd bowtie

and, in that directory, create one job running bowtie, in a directory named exactly as the input directories:

mkdir set1
cd set1
moa new bowtie -t 'run bowtie for {{_}}'

Note the magic variable {{_}}. This variable is replaced by the name of the current directory. So when running moa show, the title would show up as “run bowtie for set1”. This magic variable can be used
in all variables, and we’ll use it here to set this job up in such a way that it can be reused for the other datasets:

```bash
set moa fq_forward_input='../../fq/{{_}}/*_1.fq'
```

Now - we replicate this directory in the following manner. We’ll move one directory up, to the **bowtie** directory, and create a **sync** job:

```bash
cd ..
moa new sync -t 'run bowtie for all fq datasets'
moa set source=../fq/
```

The sync template keeps directories synchronized, based on the **source** directory. If you now run `moa run` in the **bowtie** directory, two more directories will be created: **set2** and **set3**, each containing a verbatim copy of the original bowtie job created.

If, at a certain moment you obtain more fastq datasets:

```
./fq/set4/set4_1.fq
./fq/set4/set4_2.fq
```

you can repeat `moa run` in the **/bowtie** sync directory, and a new directory will be created. Note that the **sync** template will not remove directories. Also if you want to update the configuration of the synchronized bowtie jobs, you only need to change the configuration in one directory, run `moa run` again in the **/bowtie** directory and the configuration is synchronized across all jobs.

NOTE: both the software and the manual are under development. Expect things to change.

2.6 How to write a template

A MOA template is made up of a **.moa** file and a **.jinja2** (or **.mk**) file.

The **.moa** file mainly contains input-output file sets and parameter options used for the bash command(s). Some of these options have default values which the user can change while constructing the job.

The **.jinja2** file includes information to structure the command(s). It is written in **jinja**, which is a templating language for python and is simple to write and easy to understand.

These files are used by the backend, currently **ruffus**, that manages file set and parameter dependencies to make pipelines and render commands to the bash prompt. Initially, **GNU make** was the backend used. It is very powerful but some of its limitations and its complexity led to including **ruffus** as an option for the backend as well.

The easiest way to write a moa template is to edit an existing template to suit your requirements. This involves understanding the parts of an existing template.

The **bwa_aln** template is used as an example below. Just as a background, the **bwa aln** command takes a FASTQ file as input and aligns it to a reference genome that was previously indexed. The output is a .sai file with the alignments.

The **bwa_aln**. **moa** file has some main components:

- **Backend**
This is ‘ruff’ which means that ruffus is used in the python script at a lower level to read the template .moa and .jinja2 file, and render the corresponding commands to the bash prompt.

Commands

commands:
- run:
 - mode: map
 - help: run bwa aln
- clean:
 - mode: simple
 - help: Remove all job data, not the Moa job itself, note that this must be implemented by the template.

This indicates the function names that you will later define. In the example above, there are 2 commands- run and clean, so moa run or moa clean on the command prompt in the job directory would execute these functions.

Filesets

filesets:
- input:
 - category: input
 - extension: fq
 - help: Fastq input files
 - glob: ‘*’
 - optional: false
 - type: set
- output:
 - category: output
 - dir: .
 - extension: sai
 - glob: '{{ input_glob }}'
 - source: input
 - type: map

Like the name, each filesets refer to a set of files in a single directory. The bwa_aln template shows 2 filesets: input and output.

- Category: is essentially used to separate input from output.
- Extension: refers to the type of file(s) required or generated.
- Glob: searches for files with a specified pattern. Moa, by default (glob= *) automatically processes all files of the specified input extension in the directory specified. By specifying a glob, Moa will only process those files whose name pattern matches what is in the glob.
- Type: refers to the data type of the fileset or parameter.

A fileset can either be of set or map type. The type set refers to a simple set of files in a directory. The type map refers to a set of files that are linked to what their source value is. In the above code, the output fileset is mapped to the input fileset.

- Dir: the directory of the output fileset is ‘.’, which means that the output files will be placed in the current working directory.

Parameter category order

2.6. How to write a template
parameter_category_order:
- ''
- input
- system
- advanced

• **Parameters**

mismatch_penalty:
 category: ''
default: 3
 help: mismatch penalty
 optional: true
 type: integer

They are the variables/options that specify a command.

 – **Category:**

 – **Default:** is the value that is used by default if not changed by the user.

 – **Optional:** specifies if it is necessary for the user to fill in a value for the variable. If optional is false, the user has to indicate a value for the parameter in order to execute the job.

 – **Type:** specifies the data type of the variable eg. integer, string, boolean.

• **Moa_id**

 moa_id: bwa_aln

is supposed to be the same as the filename. Ideally something descriptive (eg. bwa_aln). This is used to later link to the other template file.

The other template file is ‘‘bwa_aln.jinja2” which is written in jinja, a templating language for python. *Note that the jinja file name is the same as the moa file name.*

Important features of the bwa_aln.jinja2 file are:

• The three hash’s (###) specify the start of a function and are followed by the function name. In our bwa_aln example, we have defined 2 funtions: run and clean.

 ### run

• This definition is followed by a set of commands which you would want to be executed when you type moa run or moa_clean in the bwa_aln job directory. The commands in our example file look the same as what you would put in the command prompt but the values of the parameters are bought from the .moa file and hence it’s value is replaced by the parameter name.

 bwa aln {{db}} \
 -n {{edit_dist_missing_prob}} \
 . \
 . \
 . \
 {{ input }} \
 -f {{ output}}

• It is also possible to add if-else statements or other computing blocks in accordance with the design language.
2.7 Command reference

2.7.1 moa!

Create a ‘simple’ job from the last command issued. Set the process parameter to the last issued command. If a moa job exists in the current directory, then the process parameter is set without questions. (even if the Moa job in question does not use the process parameter). If no moa job exists, a simple job is created first. Note: This works only when using bash and if moainit is sourced properly.

moainit defines a bash function _moa_prompt that is called every time a command is issued (using $PROMPT_COMMAND). The _moa_prompt function takes the last command from the bash history and stores it in ~/.config/moa/last.command. Additionally, the _moa_prompt function stores all commands issued in a Moa directory in .moa/local_bash_history.

optional arguments:
- -h, --help show this help message and exit
- -r, --recursive Run this job recursively
- -v, --verbose Show debugging output
- --profile Run the profiler
- -f, --force Force this action
- -t TITLE, --title TITLE A title for this job

2.7.2 moa archive

Archive a job, or tree with jobs for later reuse. This command stores only those files that are necessary for execution of this job, that is: templates & configuration. In & output files, and any other file are ignored. An exception to this are all files that start with ‘moa. If the name is omitted, it is derived from the jobid parameter. It is possible to run this command recursively with the -r parameter - in which case all (moa job containing) subdirectories are included in the archive.

positional arguments: name archive name

optional arguments:
- -h, --help show this help message and exit
- -r, --recursive Run this job recursively
- -v, --verbose Show debugging output
- --profile Run the profiler
- -f, --force Force this action
- -s, --sync Alternative approach to deal with sync type jobs - only include _ref directories
- -t, --template Store this archive as a template
2.7.3 moa blog

Add an entry to the blog job (Blog.md) Allows a user to maintain a blog for this job (in Blog.md). Use as follows: $ moa blog Enter your blog message (ctrl-d on an empty line to finish) ... enter your message here .. [ctrl-d] Note: the ctrl-d needs to be given on an empty line. The text is appended to moa.description. In the web interface this is converted to Markdown_.. _Markdown: http://daringfireball.net/projects/markdown/ markdown.

optional arguments:
- `-h, --help` show this help message and exit
- `-r, --recursive` Run this job recursively
- `-v, --verbose` Show debugging output
- `--profile` Run the profiler

2.7.4 moa change

Add entry to CHANGELOG.md This function allows the user to add an entry to CHANGELOG.md (including a timestamp). Use it as follows: $ moa change Enter your changelog message (ctrl-d on an empty line to finish) ... enter your message here .. [ctrl-d] Note: the ctrl-d needs to be given on an empty line. The text is appended to moa.description. In the web interface this is converted to Markdown_.. _Markdown: http://daringfireball.net/projects/markdown/ markdown. Note the same can be achieved by specifying the `-m` parameter (before the command - for example: moa -m ‘intelligent remark’ set ...

optional arguments:
- `-h, --help` show this help message and exit
- `-r, --recursive` Run this job recursively
- `-v, --verbose` Show debugging output
- `--profile` Run the profiler

2.7.5 moa cp

Copy a moa job, or a tree with jobs (with `-r`). moa cp copies only those files defining a job: the template files and the job configuration. Additionally, all files in the moa directory that start with moa. (for example moa.description are copied as well. Data and log files are not copied!). If used in conjunction with the `-r` (recursive) flag the complete tree is copied.

positional arguments: from copy from this path to copy to this path

optional arguments:
- `-h, --help` show this help message and exit
- `-r, --recursive` Run this job recursively
-v, --verbose Show debugging output
--profile Run the profiler
-o, --overwrite if the target dir exists - overwrite (instead of copying into that dir)

2.7.6 moa err

Show the stderr of the most recently executed moa job

optional arguments:
-h, --help show this help message and exit
-r, --recursive Run this job recursively
-v, --verbose Show debugging output
--profile Run the profiler

2.7.7 moa files

Show in and output files for this job Display a list of all files discovered (for input & prerequisite type filesets) and inferred from these for map type filesets.

optional arguments:
-h, --help show this help message and exit
-r, --recursive Run this job recursively
-v, --verbose Show debugging output
--profile Run the profiler

2.7.8 moa kill

Kill a running job. This command checks if a job is running. If so - it tries to kill it by sending SIGKILL (-9) to the job.

optional arguments:
-h, --help show this help message and exit
-r, --recursive Run this job recursively
-v, --verbose Show debugging output
--profile Run the profiler
2.7.9 moa list

Lists all known templates Print a list of all templates known to this moa installation. This includes locally installed templates as well.

optional arguments:

- `-h, --help` show this help message and exit
- `-r, --recursive` Run this job recursively
- `-v, --verbose` Show debugging output
- `--profile` Run the profiler
- `-d` Print a short template description

2.7.10 moa lock

Lock a job - prevent execution

optional arguments:

- `-h, --help` show this help message and exit
- `-r, --recursive` Run this job recursively
- `-v, --verbose` Show debugging output
- `--profile` Run the profiler

2.7.11 moa log

Show activity log Shows a log of moa commands executed. Only commands with an impact on the pipeline are logged, such as `moa run` & `moa set`.

optional arguments:

- `-h, --help` show this help message and exit
- `-r, --recursive` Run this job recursively
- `-v, --verbose` Show debugging output
- `--profile` Run the profiler

2.7.12 moa map

create an adhoc moa ‘map’ job Moa will query the user for process, input & output files. An example session

optional arguments:

- `-h, --help` show this help message and exit
2.7.13 moa mv

Move, rename or renumber a moa job.

Positional arguments: from copy from this path to copy to this path

Optional arguments:
- `-h, --help` show this help message and exit
- `-r, --recursive` Run this job recursively
- `-v, --verbose` Show debugging output
- `--profile` Run the profiler

2.7.14 moa new

Create a new job. This command creates a new job with the specified template in the current directory. If the directory already contains a job it needs to be forced using `-f`. It is possible to define arguments for the job on the commandline using KEY=VALUE after the template. Note: do not use spaces around the ‘=’ sign. Use quotes if you need spaces in variables (KEY='two values')

Positional arguments: template name of the template to use for this moa job parameter arguments for this job, specify as KEY=VALUE without spaces

Optional arguments:
- `-h, --help` show this help message and exit
- `-r, --recursive` Run this job recursively
- `-v, --verbose` Show debugging output
- `--profile` Run the profiler
- `-f, --force` Force this action
- `-d DIRECTORY, --directory DIRECTORY` directory to create the job in
- `-t TITLE, --title TITLE` mandatory job title
2.7.15 moa out

Show the stdout of the most recently executed moa job

optional arguments:
- -h, --help show this help message and exit
- -r, --recursive Run this job recursively
- -v, --verbose Show debugging output
- --profile Run the profiler

2.7.16 moa pause

Pause a running job

optional arguments:
- -h, --help show this help message and exit
- -r, --recursive Run this job recursively
- -v, --verbose Show debugging output
- --profile Run the profiler

2.7.17 moa postcommand

Execute ‘postcommand’

optional arguments:
- -h, --help show this help message and exit
- -r, --recursive Run this job recursively
- -v, --verbose Show debugging output
- --profile Run the profiler

2.7.18 moa precommand

Execute ‘precommand’

optional arguments:
- -h, --help show this help message and exit
- -r, --recursive Run this job recursively
- -v, --verbose Show debugging output
- --profile Run the profiler
2.7.19 moa readme

Edit the README.md file for this job. You could, obviously, also edit the file yourself - this is a mere shortcut to try to stimulate you in maintaining one.

Optional arguments:

- `-h, --help` show this help message and exit
- `-r, --recursive` Run this job recursively
- `-v, --verbose` Show debugging output
- `--profile` Run the profiler

2.7.20 moa refresh

Refresh the template. Reload the template from the original repository.

Optional arguments:

- `-h, --help` show this help message and exit
- `-r, --recursive` Run this job recursively
- `-v, --verbose` Show debugging output
- `--profile` Run the profiler

2.7.21 moa resume

Resume a running job.

Optional arguments:

- `-h, --help` show this help message and exit
- `-r, --recursive` Run this job recursively
- `-v, --verbose` Show debugging output
- `--profile` Run the profiler

2.7.22 moa set

Set one or more variables. This command can be used in two ways. In its first form both parameter key and value are defined on the command line: `moa set KEY=VALUE`. Note that the command line will be processed by bash, which can either create complications or prove very useful. Take care to escape variables that you do not want to be expandend and use single quotes where necessary. For example, to include a space in a variable: `moa set KEY='VALUE WITH SPACES'`. Alternative use of the set command is by just specifying the key: `moa set PARAMETER_NAME`, in which case Moa will prompt the user enter a value - circumventing problems with bash interpretation.
position**al arguments**: parameter arguments for this job, specify as KEY=VALUE without spaces

optional arguments:

- **-h, --help** show this help message and exit
- **-r, --recursive** Run this job recursively
- **-v, --verbose** Show debugging output
- **--profile** Run the profiler
- **-f, --force** Force this action

2.7.23 moa show

Show all parameters know to this job. Parameters in **bold** are specifically configured for this job (as opposed to those parameters that are set to their default value). Parameters in red are not configured, but need to be for the template to operate. Parameters in blue are not configured either, but are optional.

optional arguments:

- **-h, --help** show this help message and exit
- **-r, --recursive** Run this job recursively
- **-v, --verbose** Show debugging output
- **--profile** Run the profiler
- **-u** show unrendered values (when using inline parameters)
- **-R** show recursively defined parameters not specified by the local template
- **-p** show private parameters
- **-a** show all parameters

2.7.24 moa simple

Create a ‘simple’ adhoc job. Simple meaning that no in or output files are tracked. Moa will query you for a command to execute (the `process` parameter).

optional arguments:

- **-h, --help** show this help message and exit
- **-r, --recursive** Run this job recursively
- **-v, --verbose** Show debugging output
- **--profile** Run the profiler
- **-f, --force** Force this action
- **-t TITLE, --title TITLE** A title for this job
2.7.25 moa status

Show job status Print a short status of the job, including configuration

optional arguments:

- `-h, --help` show this help message and exit
- `-r, --recursive` Run this job recursively
- `-v, --verbose` Show debugging output
- `--profile` Run the profiler
- `-u` show unrendered values (when using inline parameters)
- `-R` show recursively defined parameters not specified by the local template
- `-p` show private parameters
- `-a` show all parameters

2.7.26 moa test

Test the job parameters

optional arguments:

- `-h, --help` show this help message and exit
- `-r, --recursive` Run this job recursively
- `-v, --verbose` Show debugging output
- `--profile` Run the profiler

2.7.27 moa tree

Show a directory tree and job status

positional arguments: filter show only directories that match this filter

optional arguments:

- `-h, --help` show this help message and exit
- `-r, --recursive` Run this job recursively
- `-v, --verbose` Show debugging output
- `--profile` Run the profiler
- `-a, –all`
2.7.28 moa unlock

Unlock a job - allow execution

Optional arguments:

- `-h, --help` show this help message and exit
- `-r, --recursive` Run this job recursively
- `-v, --verbose` Show debugging output
- `--profile` Run the profiler

2.7.29 moa unset

Remove a parameter from the configuration Remove a configured parameter from this job. In the parameter was defined by the job template, it reverts back to the default value. If it was an ad-hoc parameter, it is lost from the configuration.

Positional arguments: parameter parameter to unset

Optional arguments:

- `-h, --help` show this help message and exit
- `-r, --recursive` Run this job recursively
- `-v, --verbose` Show debugging output
- `--profile` Run the profiler

2.7.30 moa version

Print moa version number

Optional arguments:

- `-h, --help` show this help message and exit
- `-r, --recursive` Run this job recursively
- `-v, --verbose` Show debugging output
- `--profile` Run the profiler

2.7.31 msp

moa set process

Usage:
msp

this is an alias for the often used:

moa set process

2.8 Templates

Contents:

2.8.1 abyss_pe

Run Abysspe

Commands

- **clean** Remove all job data
- **run** Execute abysspe in paired-end mode

Filesets

- **fq_forward** fastq input files directory - forward
- **fq_reverse** fastq input files directory - reverse

```
type: map
source: fq_forward
category: input
optional: True
pattern: */*_2.fq
```

- **output** soap denovo output file

```
type: single
category: output
optional: True
pattern: {}
```

Parameters

- **joinpairs** number of pairs needed to consider joining two contigs

type: integer
default: 10
optional: True

kmer kmer size

type: integer
default: 31
optional: True

threads no threads to use

type: integer
default: 3
optional: True

miscellaneous

Backend ruff

Author Mark Fiers

Creation date Mon, 21 Nov 2011 12:47:16

Modification date Mon, 21 Nov 2011 12:47:22

2.8.2 abyss_se

Run Abysspe

Commands

clean Remove all job data

run Execute abyss se

Filesets

input fastq input files directory

output soap denovo output file

type: single
category: output
optional: True
pattern: {}

Parameters

kmer kmer size

type: integer
default: 31
optional: True

threads no threads to use

type: integer
default: 3
optional: True

miscellaneous

Backend ruff

Author Mark Fiers

Creation date Mon, 21 Nov 2011 12:47:16

Modification date Mon, 21 Nov 2011 12:47:22

2.8.3 adhoc

Execute an ad hoc analysis

The *adhoc* template assists in running one-liners - possibly on a set of input files

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run no help defined

Filesets

input Input files for adhoc
Parameters

mode

operation mode: seq, sequential: process the input files one by one; par, parallel: process the input files in parallel (use with -j); all: process all input files at once (use $^ in adhoc_process) and simple: Ignore input files, just execute adhoc_process once.

type: set
default: simple
optional: True

name_sed A sed expression which can be used to derive the output file name for each input file (excluding the path). The sed expression is executed for each input file name, and the result is available as $t in the $(adhoc_process) statement. Make sure that you use single quotes when specifying this on the command line

 type: string
default: s/a/a/
optional: True

output_dir Output subdirectory

type: directory
default: .
optional: True

process Command to execute for each input file. The path to the input file is available as $< and the output file as $t. (it is not mandatory to use both parameters, for example “cat $< > output” would concatenate all files into one big file

 type: string
default: echo “needs a sensbile command”
optional: True

touch use touch files to track if input files have changed.

 type: set
default: T
optional: True
miscellaneous

Backend gnumake

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.4 archroot

Helper script for a root archive

Helper script for the root of an archive template

Commands

run *no help defined*

Parameters

moa_archive_parameters space separated list of parameters to set for this template

 type: string
 default: {}
 optional: False

miscellaneous

Backend ruff

Author Mark Fiers

Creation date Tue, 17 Apr 2012 10:21:31

Modification date Tue, 17 Apr 2012 10:21:25

2.8.5 bamextract

bamextract

Extract a region from a BAM file

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run Extract a region from a BAM file

2.8. Templates
Filesets

bam BAM input

- *type:* single
- *category:* input
- *optional:* False
- *pattern:* {}

regions List with regions to extract (id seqid start stop)

- *type:* single
- *category:* input
- *optional:* True
- *pattern:* {}

Parameters

flank flanking region to extract

- *type:* integer
- *default:* 100
- *optional:* {}

miscellaneous

Backend ruff

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.6 bartab

Bartab

- BARTAB - a tool to process sff files

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run
Parameters

extra_parameters extra parameters to feed bartab

 type: string
 default: ''
 optional: True

forward_primer remove forward primer

 type: string
 default: ''
 optional: True

in input file for bartab

 type: file
 default: ''
 optional: False

map A file mapping barcodes to metadata

 type: file
 default: ''
 optional: True

min_length minimum acceptable sequence length

 type: integer
 default: 50
 optional: True

out base output name

 type: integer
 default: bartab
 optional: True

2.8. Templates
qin Quality scores for the input fasta file

```
type: file
default: ''
optional: True
```

reverse_primer remove reverse primer

```
type: string
default: ''
optional: True
```

trim Trim barcode

```
type: set
default: T
optional: True
```

Miscellaneous

Backend gnumake

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.7 bdbb

Bidirectional best BLAST hit

Discover the bidirectional best blast hit between two sets of sequences

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run generate a list of bidirectional best blast hits between two databases of sequences

Filesets

input_a First multi fasta input set
input_a Second multi fasta input set

```plaintext
type: single
category: input
optional: False
pattern: */*.fasta
```

output List of bidirectional best blasts hits

```plaintext
type: map
source: input_a
category: output
optional: True
pattern: */*.list
```

Parameters

eval e value cutoff

```plaintext
type: float
default: 1e-10
optional: True
```

extract Extract the identified sequences from the input fasta files

```plaintext
type: boolean
default: False
optional: True
```

nothreads Threads to run blast with

```plaintext
type: integer
default: 4
optional: True
```
protein Is this a protein set

 type: boolean
 default: False
 optional: True

tblastx If this is a nucleotide set, use tblastx?? (otherwise use blastn)

 type: boolean
 default: F
 optional: True

miscellaneous

Backend ruff
Author Mark Fiers
Creation date Wed Nov 10 07:56:48 2010
Modification date unknown

2.8.8 bfast_aln

Generate bam format alignments using bfast

Commands

clean Remove all job data, not the Moa job itself
run run bfast match, localalign, postprocess commands

Filesets

fa_input fasta input file
fq_input fastq input files
output_aln

 type: map
 source: fq_input
 category: output
 optional: {}
 pattern: */*.aln

output_bam

 type: map
source: fq_input
category: output
optional: {}
pattern: /*.bam

Parameters

algorithm_colour_space true -> colour space, false -> NT space

type: boolean
default: False
optional: True

avg_mism_qual Specifies the average mismatch quality

type: integer
default: 10
optional: True

extra_params_localalign Any extra parameters for the localalign command

type: string
default: ‘’
optional: True

extra_params_match Any extra parameters for the match command

type: string
default: ‘’
optional: True

extra_params_postprocess Any extra parameters for the postprocess command

type: string
default: ‘’
optional: True

min_mapping_qual Specifies to remove low mapping quality alignments
min_norm_score Specifies to remove low (alignment) scoring alignments

```
type: integer
default: -2147483648
optional: True
```

output_format 0 - BAF, 1 - SAM

```
type: integer
default: 1
optional: True
```

paired_opp_strands Specifies that paired reads are on opposite strands

```
type: boolean
default: False
optional: True
```

pairing_std_dev Specifies the pairing distance standard deviation to examine when recuing

```
type: float
default: 2.0
optional: True
```

print_params print program parameters

```
type: boolean
default: False
optional: True
```

thread_num Specifies the number of threads to use

```
type: integer
```
default: 1
optional: True

timing_information specifies output timing information

type: boolean
default: True
optional: True

ungapped_aln Do ungapped local alignment

type: boolean
default: False
optional: True

ungapped_pairing_rescue Specifies that ungapped pairing rescue should be performed

type: boolean
default: False
optional: True

unpaired_reads True value specifies that pairing should not be performed

type: boolean
default: False
optional: True

usage_summary Display usage summary (help)

type: boolean
default: False
optional: True

which_strand 0 - consider both strands, 1 - forwards strand only, 2 - reverse strand only

 type: integer
default: 0
optional: True

miscellaneous

Backend ruff
Author Yogini Idnani, Mark Fiers
Creation date Wed Feb 15 10:06:48 2011
Modification date unknown

2.8.9 bfast_db

Generate db index files for aligning reads with bfast

Commands

clean Remove all job data, not the Moa job itself
run run bfast fasta2brg and index commands

Filesets

fa_input fasta input file

Parameters

algorithm_colour_space true -> colour space, false -> NT space

type: boolean
default: False
optional: True

depth The depth of the splitting(d). The index will be split into 4^d parts.

type: integer
default: 0
optional: True

extra_params Any extra parameters

type: string
default: ‘‘
optional: True

hash_width The hash width for the index (recommended from manual = 14)

```
type: integer
default: {}
on optional: False
```

index_num Specifies this is the ith index you are creating

```
type: integer
default: 1
optional: True
```

mask The mask or spaced seed to use.

```
type: string
default: {}
on optional: False
```

print_params print program parameters

```
type: boolean
default: False
optional: True
```

thread_num Specifies the number of threads to use

```
type: integer
default: 1
optional: True
```

timing_information specifies output timing information

```
type: boolean
default: True
optional: True
```
usage_summary Display usage summary (help)

 type: boolean
 default: False
 optional: True

miscellaneous

Backend ruff

Author Yogini Idnani, Mark Fiers

Creation date Wed Feb 15 10:06:48 2011

Modification date unknown

2.8.10 blast

Basic Local Alignment Tool

 Wraps BLAST [[Alt90]], probably the most popular similarity search tool in bioinformatics.

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

report Generate a text BLAST report.

run Running BLAST takes an input directory, determines what sequences are present and executes BLAST on each of these. Moa BLAST is configured to create XML output (as opposed to the standard text based output) in the out directory. The output XML is subsequently converted to GFF3 by the custom blast2gff script (using BioPython). Additionally, a simple text report is created.

Filesets

db Blast database

 type: single
 category: prerequisite
 optional: False
 pattern: */*

input Directory with the input files for BLAST, in Fasta format

outgff GFF output files
type: map
source: input
category: output
optional: True
pattern: gff/*.gff

output XML blast output files

type: map
source: input
category: output
optional: True
pattern: out/*.out

Parameters

eval e value cutoff

type: float
default: 1e-10
optional: True

gff_blasthit (T,**F**) - export an extra blasthit feature to the created gff, grouping all hsp (match) features.

type: set
default: F
optional: True

gff_source source field to use in the gff

type: string
default: BLAST
optional: True

nohits number of hits to report

type: integer
default: 50
optional: True

nothreads threads to run blast with (note the overlap with the Make -j parameter)

 type: integer
 default: 2
 optional: True

program blast program to use (default: blastn)

 type: set
 default: blastn
 optional: True

miscellaneous

Backend ruff

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.11 blastdb

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run Takes either a set of fasta files or a single multi-fasta input file and creates a BLAST database.

Filesets

dbname

 type: map
 source: input
 category: output
 optional: {}
 pattern: /db

input The file with all input FASTA sequences for the blastdb.

 type: single
category: input
optional: False
pattern: */*.fasta

Parameters

protein Protein database? (T)rue) or not (F)alse (default: F)

type: set
default: F
optional: True

miscellaneous

Backend ruff
Author Mark Fiers
Creation date Wed Nov 10 07:56:48 2010
Modification date Tue, 03 Jan 2012 15:00:23

2.8.12 blat

Blat

Run BLAT on an set of input files (query) vs a database.

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.
run no help defined

Parameters

db type of the database (dna, prot or dnax)

type: set
default: ‘’
optional: False

db_id_list a sorted list of db ids and descriptions, enhances the report generated

type: file
db_type type of the database (dna, prot or dnax)

 type: set
 default: dna
 optional: True

eval evalue cutoff to select the reported hits on (defaults to 1e-15)

 type: float
 default: 1e-10
 optional: True

gff_source Source field for the generated GFF files

 type: string
 default: ‘’
 optional: False

input_dir source field in the generated gff

 type: directory
 default: ‘’
 optional: False

input_extension extension of the input files

 type: string
 default: fasta
 optional: True

input_file input query file. If this variable is not defined, the combination of blat_input_dir and blat_input_extension is used to find a list of input files

 type: file
default: ''
optional: False

query_type type of the query (dna, rna, prot, dnax or ranax)

type: set
default: dna
optional: True

miscellaneous

Backend gnumake
Author Mark Fiers
Creation date Wed Nov 10 07:56:48 2010
Modification date Wed Nov 10 07:56:48 2010

2.8.13 bowtie

Bowtie

Run BOWTIE on an set of input files (query) vs a database index.

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template
run no help defined

Filesets

input Fasta/fastq input files for bowtie
output Output files

type: map
source: input
category: output
optional: {}
pattern: /*.bam

2.8. Templates
Parameters

db The (basename of the) bowtie database to use.

```
type: string
default: {}
optional: False
```

extra_params extra parameters to feed bowtie

```
type: string
default: ''
optional: True
```

input_format Format of the input files

```
type: set
default: fastq
optional: True
```

miscellaneous

Backend ruff

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.14 bowtie_pe

Run BOWTIE on an set of input files (query) vs a database index.

Commands

clean Remove all job data, not the Moa job itself

finish finish up

report Create a report on the results

run Execute soapdenovo in paired-end mode
Filesets

db The (basename of the) bowtie database to use.

 type: single
 category: prerequisite
 optional: False
 pattern: ../20.bowtiedb/db

fq_forward_input Fastq input files - forward
fq_reverse_input Fastq input files - reverse

 type: map
 source: fq_forward_input
 category: input
 optional: True
 pattern: */*_2.fq

output Bam output file

 type: map
 source: fq_forward_input
 category: output
 optional: {}
 pattern: */*_2.bam

Parameters

extra_params extra parameters to feed to bowtie

 type: string
 default: ""
 optional: True

input_format Format of the input files

 type: set
 default: fastq
 optional: True
lots_of_data Keep unmapped reads, unsorted BAM - takes up a lot of space!

 type: boolean
 default: False
 optional: True

max_insertsize Maximum allowed insertsize

 type: integer
 default: 250
 optional: True

min_insertsize Minimum allowed insertsize

 type: integer
 default: 1
 optional: True

orientation orientation of the reads, allowed values are fr, rf, ff

 type: dict
 default: fr
 optional: True

miscellaneous

Backend ruff

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.15 bowtie_se

Run BOWTIE on an set of input files (query) vs a database index.

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template

run no help defined
Filesets

fq_input fastq input files directory
output Bam output file

type: map
source: fq_input
category: output
optional: {}
pattern: */*.bam

Parameters

ebwt_base The (basename of the) bowtie database to use.

type: string
default: {}
optional: False

extra_params extra parameters to feed to bowtie

type: string
default: ""
optional: True

input_format Format of the input files

type: set
default: fastq
optional: True

output_format Format of the output file

type: set
default: bam
optional: True
miscellaneous

Backend ruff

Author Yogini Idnani, Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.16 bowtiedb

Bowtie index builder

Builds a bowtie index from a reference sequence

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run Create the bowtie database

Filesets

input Input fasta file for the bowtie database

output database name to create

type: single

category: output

optional: {}

pattern: db

Parameters

extra_params any option parameters

type: string

default: ‘’

optional: True

miscellaneous

Backend ruff

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010
2.8.17 bwa_aln

Use BWA to align a set of fastq reads against a db

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run run bwa aln

Filesets

input Fastq input files

output

- type: map
- source: input
- category: output
- optional: {}
- pattern: */*.sai

Parameters

best_hits_stop stop searching when there are >INT equally best hits

- type: integer
- default: {}
- optional: True

color_space input sequences are in the color space

- type: boolean
- default: False
- optional: True

db bwa database to align against

- type: string
- default: {}
- optional: False
edit_dist_missing_prob max

 type: float
 default: {}
 optional: True

gap_ext_max

 type: integer
 default: {}
 optional: True

gap_ext_penalty gap extension penalty

 type: integer
 default: {}
 optional: True

gap_open_penalty gap open penalty

 type: integer
 default: {}
 optional: True

gap_opens_max maximum number or fraction of gap opens

 type: integer
 default: {}
 optional: True

cell

log_gap_penalty_del log-scaled gap penalty for long deletions

 type: boolean
 default: {}
 optional: True

max_ext_long_del maximum occurrences for extending a long deletion

 type: integer
default: {}
optional: True

max_queue_entry maximum entries in the queue

type: integer
default: {}
optional: True

mismatch_penalty mismatch penalty

type: integer
default: {}
optional: True

no_indel_from_ends do not put an indel within INT bp towards the ends

type: integer
default: {}
optional: True

non_iterative non-iterative mode search for all n-difference hits (slow)

type: boolean
default: False
optional: True

quality_step quality threshold for read trimming down to 35bp

type: integer
default: {}
optional: True

seed_len Seed length

type: integer
default: {}
optional: True

seed_max_diff Maximum differences in the seed

```
  type: integer
  default: {}
  optional: True
```

thread_num number of threads

```
  type: integer
  default: {}
  optional: True
```

miscellaneous

Backend ruff

Author Mark Fiers, Yogini Idnani

Creation date Wed Nov 10 07:56:48 2010

Modification date unknown

2.8.18 bwa_index

Bwa index builder

Builds a bwa index from a reference sequence

Commands

clean Remove all job data

run Create the index

Filesets

input Input fasta file for the bowtie database

```
  type: single
  category: input
  optional: False
  pattern: */*.fasta
```
Parameters

algorithm Algorithm for constructing BWT index. Available options are ‘is’ and ‘bwtsw’

 type: string
 default: is
 optional: True

color_space input sequences are in the color space

 type: boolean
 default: False
 optional: True

prefix Name of the bwa index to create

 type: string
 default: db
 optional: True

miscellaneous

Backend ruff

Author Mark Fiers, Yogini Idnani

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.19 bwa_sampe

Generate alignments in SAM format given paired end reads

Commands

clean Remove all job data, not the Moa job itself

run run bwa sampe

Filesets

fq_forward_input fastq input files directory - forward

fq_reverse_input fastq input files directory - reverse
Moa Documentation, Release 0.11.0

- **output_bam**
 - type: map
 - source: fq_forward_input
 - category: output
 - optional: True
 - pattern: */*.bam

- **sai_forward_input** sai input files - forward
 - type: map
 - source: fq_forward_input
 - category: input
 - optional: False
 - pattern: */*_1.sai

- **sai_reverse_input** sai input files - reverse files
 - type: map
 - source: sai_forward_input
 - category: input
 - optional: True
 - pattern: */*_2.sai

Parameters

- **db** bwa database to align against
 - type: string
 - default: {}
 - optional: False

- **disable_insert_size** disable insert size estimate (force -s)
 - type: boolean
default: False
optional: True

disable_SW disable Smith-Waterman for the unmapped mate

type: boolean
default: False
optional: True

max_aln_out maximum hits to output for paired reads

type: integer
default: 3
optional: True

max_insert_size maximum insert size

type: integer
default: 500
optional: True

max_occ_read maximum occurrences for one end

type: integer
default: {}
optional: True

max_out_discordant_pairs maximum hits to output for discordant pairs

type: integer
default: {}
optional: True

preload_index preload index into memory (for base-space reads only)

type: boolean
default: False
optional: True

prior_chimeric_rate prior of chimeric rate (lower bound)

type: integer
default: {}
optional: True

miscellaneous

Backend ruff

Author Yogini Idnani, Mark Fiers

Creation date Wed Nov 25 17:06:48 2010

Modification date unknown

2.8.20 bwa_samse

Generate alignments in SAM format given single end reads, using both ‘bwa samse’.

Commands

clean Remove all job data, not the Moa job itself

run run bwa samse

Filesets

fq_input fastq input file

output_bam output bam file

sai_input sai input directory - filenames must correspond to the fastq input files
Moa Documentation, Release 0.11.0

Parameters

db bwa database to align against

 type: string
 default: ''
 optional: False

max_aln_out Maximum number of alignments to output in the XA tag for reads paired properly

 type: integer
 default: 3
 optional: True

miscellaneous

Backend ruff

Author Yogini Idnani, Mark Fiers

Creation date Wed Nov 25 17:06:48 2010

Modification date unknown

2.8.21 cdsmatrix

CdsMatrix

 Predicts (prokaryotic) using glimmer3.

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run Generate a matrix of CDS’s

Filesets

input Directory with the cds files for Glimmer3

output Output blast files

 type: map

2.8. Templates
source: input
category: output
optional: True
pattern: */.out

reference reference multi fasta file

type: single
category: prerequisite
optional: {}
pattern: */*.fasta

table table files

type: map
source: input
category: output
optional: True
pattern: */*.tab

Parameters

cutoff score cutoff value - disregards hits below this score

type: {}
default: 100
optional: True

miscellaneous

Backend ruff

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Thu, 21 Jul 2011 20:31:10 +1200

2.8.22 cleanFasta

clean Fasta

Convert files to unix format and convert all characters that are not an A,C,G,T or N to N.
Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run Cleanup of a FASTA file (in place!)

Parameters

cf_input_dir Directory with the sequences to run cleanfasta on

```
type: directory
default: ''
optional: False
```

cf_input_extension input file extension

```
type: string
default: fasta
optional: True
```

sed_command

```
type: string
default: /^>/[^ACGTNacgtn]/N/g
optional: True
```

miscellaneous

Backend gnumake

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.23 clustalgroup

clustalw

Run clustalw on two sets of sequences

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run run clustalw

2.8. Templates 61
Parameters

cwg_input_dir This set of sequences to run clustalw on

```
type: directory
default: ''
optional: False
```

cwg_input_extension Input file extension

```
type: string
default: fasta
optional: True
```

miscellaneous

Backend gnumake

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.24 clustalpair

clustalw

Run clustalw on two sets of sequences

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run run clustalw

Parameters

input_dir_a This set is compared to the sequences in input_dir_b. only a forward comparison is made (a against b, not the other way round)

```
type: directory
default: ''
optional: False
```
input_dir_b The set to compare against

 type: directory
 default: ''
 optional: False

input_extension Extension of the input files

 type: string
 default: fasta
 optional: True

miscellaneous

Backend gnumake

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.25 clustalw

clustalw

Run clustalw on two sets of sequences

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.
run run clustalw

Parameters

input_dir_a This set is compared to the sequences in input_dir_b.

 type: directory
 default: ''
 optional: False

input_dir_b The set to compare against. Only a forward comparison is made (a against b, not the other way round)
input_extension Extension of the input files

- **type:** string
- **default:** fasta
- **optional:** True

miscellaneous

Backend gnumake

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.26 concatenate

Concatenate

Concatenate a set of fasta files into one.

Commands

- **clean** Remove all job data, not the Moa job itself, note that this must be implemented by the template.
- **run** no help defined

Parameters

input_dir Directory with the input data

- **type:** directory
- **default:** ‘’
- **optional:** False

input_extension Extension of the input files

- **type:** string
- **default:** fasta
- **optional:** True
name name of the file, the output file will become ./name.fasta

type: string
default: ‘’
optional: False

miscellaneous

Backend gnumake
Author Mark Fiers
Creation date Wed Nov 10 07:56:48 2010
Modification date Wed Nov 10 07:56:48 2010

2.8.27 dottup

EMBOSS Dottup

Use dottup (from EMBOSS) to compare two sets of sequences

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.
run Run dottup

Parameters

input_dir_a This set is compared to the sequences in input_dir_b.

type: directory
default: ‘’
optional: False

input_dir_b The set to compare against

type: directory
default: ‘’
optional: True

input_extension Extension of the dottup input files

2.8. Templates
type: string
default: fasta
optional: True

wordsize Wordsize used to discover similarities between sequences

type: integer
default: 8
optional: True

miscellaneous

Backend gnumake

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.28 empty

empty

Do nothing...

Commands

Parameters

miscellaneous

Backend ruff

Author Mark Fiers

Creation date Mon Apr 04 16:02:58 2011

Modification date Mon Apr 04 16:03:18 2011

2.8.29 fasta2gff

GFF from FASTA

Derive GFF from a FASTA file, usually to accompany the Sequence for upload to a generic genome browser database.
Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run *no help defined*

Parameters

f2g_gffsource Source to be used in the gff

 type: string
 default: ''
 optional: False

f2g_input_dir Directory with the input fasta files

 type: directory
 default: ''
 optional: False

f2g_input_extension glob pattern of the fasta files (default: *.fasta)

 type: string
 default: fasta
 optional: True

f2g_options options to be passed to the fasta2gff script

 type: string
 default: ''
 optional: True

f2g_output_dir Directory with the output gff

 type: directory
 default: ./gff
 optional: True
miscellaneous

Backend gnumake

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.30 fastainfo

gather information on a set of fasta files

gather info on a set of input files

Commands

finish create a report

run generate info on each of the input sequences

Filesets

input “fastainfo” input files

output “fastainfo” raw output files

\[\begin{align*}
\text{type:} & \text{ map} \\
\text{source:} & \text{ input} \\
\text{category:} & \text{ output} \\
\text{optional:} & \text{ True} \\
\text{pattern:} & \text{ stats/*.out}
\end{align*}\]

stats “fastainfo” collect stat files

\[\begin{align*}
\text{type:} & \text{ map} \\
\text{source:} & \text{ input} \\
\text{category:} & \text{ output} \\
\text{optional:} & \text{ False} \\
\text{pattern:} & \text{ stats/*.stat}
\end{align*}\]

Parameters

miscellaneous

Backend ruff
2.8.31 fastqc

Run FastQC for fastq QC

Run FastQC on a set of fastq files - quality assessment

Commands

finish Run Fastqc

finish delegates execution to: **report**

report Generate a simple fastqc report

run no help defined

Filesets

input fastqc input files'

touch touch files - track if a file has been processed - do not touch this unless you know what you're doing.

- **type**: map
- **source**: input
- **category**: output
- **optional**: True
- **pattern**: */*.touch

Parameters

output_dir output directory for the fastQC report

- **type**: dir
- **default**: .
- **optional**: True

miscellaneous

Backend ruff

Author Mark Fiers
2.8.32 fastx_clipper

run fastx_clipper

Commands

clean Remove all job data, not the Moa job itself
run run fastx_clipper

Filesets

input fastq input files directory
output
 type: map
 source: input
 category: output
 optional: {}
 pattern: */*.fq

Parameters

adaptor ADAPTER string, default is CCTTAAGG (dummy adapter).

 type: string
 default: CCTTAAGG
 optional: True

adaptor_and_bases Keep the adapter and N bases after it.

 type: integer
 default: 0
 optional: True

compress_output Compress output with GZIP.

 type: boolean
 default: False
optional: True

dbg_output DEBUG output.

 type: boolean
 default: False
 optional: True

help help screen

 type: boolean
 default: False
 optional: True

keep_unknown_nuc_seq keep sequences with unknown (N) nucleotides. default is to discard such sequences.

 type: boolean
 default: False
 optional: True

out_adaptor_only_seq Report Adapter-Only sequences.

 type: boolean
 default: False
 optional: True

rm_clipped_seq Discard clipped sequences (i.e. - keep only sequences which did not contained the adapter).

 type: boolean
 default: False
 optional: True

rm_non_clipped_seq Discard non-clipped sequences (i.e. - keep only sequences which contained the adapter).

 type: boolean
default: False
optional: True

rm_short_seq discard sequences shorter than N nucleotides. default is 5.

type: integer
default: 5
optional: True

verbose Verbose - report number of sequences. If [-o] is specified, report will be printed to STDOUT. If [-o] is not specified (and output goes to STDOUT), report will be printed to STDERR.

type: boolean
default: False
optional: True

miscellaneous

Backend ruff

Author Mark Fiers, Yogini Idnani

Creation date Wed Dec 06 17:06:48 2010

Modification date unknown

2.8.33 fastx_qual_stats

run fastx_quality_stats, fastq_quality_boxplot_graph.sh and fastx_nucleotide_distribution_graph.sh

Commands

clean Remove all job data, not the Moa job itself

run run fastx_quality_stats, fastq_quality_boxplot_graph.sh and fastx_nucleotide_distribution_graph.sh

Filesets

boxplot_output

type: map
source: input
category: output
optional: {}
pattern: /*.png

input fastq input files directory

nuc_distr_output

type: map
source: input
category: output
optional: {}
pattern: /*.png

qual_output

type: map
source: input
category: output
optional: {}
pattern: /*.txt

Parameters

gen_postScript_file Generate PostScript (.PS) file. Default is PNG image.

 type: boolean
 default: False
 optional: True

graph_title Title - will be plotted on the graph.

 type: string
 default: {{ input_glob }}
 optional: True

help help screen

 type: boolean
 default: False
 optional: True

new_out_format New output format (with more information per nucleotide/cycle)

 type: boolean
 default: False
optional: True

miscellaneous

Backend ruff

Author Mark Fiers, Yogini Idnani

Creation date Wed Dec 03 17:06:48 2010

Modification date unknown

2.8.34 filterwgs_pair

Execute a “map22” ad-hoc analysis - two input files, two output files

Filter raw WGS data

Commands

run Filter WGS data

Filesets

input1 forward input fastq

input2 reverse input fastq

 type: map
 source: input1
 category: input
 optional: False
 pattern: */*

output1 forward output fastq

 type: map
 source: input1
 category: output
 optional: True
 pattern: */*

output2 reverse output fastq

 type: map
source: input1
category: output
optional: True
pattern: / *

Parameters

adapters Fasta file with the adapter sequences to trim

type: file
default: {}
optional: False

minlen Minimum remaining sequence length

type: int
default: 50
optional: True

qual quality threshold causing trimming

type: int
default: 13
optional: True

title

type: {}
default: Filter paired fastq files using fastq-mcf
optional: {}

miscellaneous

Backend ruff

Author Mark Fiers

Creation date Tue Mar 29 16:34:19 2011

Modification date Mon, 13 Feb 2012 09:16:36 +1300
2.8.35 gather

gather files

gather a set of files and create hardlinks to. Hardlinks have as advantage that updates are noticed via the timestamp. Hence, make recognizes them.

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.
run gather files

Parameters

g_input_dir list of directories with the input files

 type: directory
 default: ‘’
 optional: False

 g_input_pattern glob pattern to download

 type: string
 default: *
 optional: True

 g_limit limit the number of files gathered (with the most recent files first, defaults to 1mln)

 type: integer
 default: 1000000
 optional: True

 g_name_sed SED expression to be executed on each file name - allows you to change file names

 type: string
 default: s/a/a/
 optional: True

 g_output_dir Output subdirectory, defaults to .
g_parallel allow parallel execution (T) or not (F). If for example concatenating to one single file, you should not have multiple threads.

```plaintext
type: set
default: F
optional: True
```

g_powerclean Do brute force cleaning (T/F). Remove all files, except moa.mk & Makefile when calling make clean. Defaults to F.

```plaintext
type: set
default: F
optional: True
```

g_process Command to process the files. If undefined, hardlink the files.

```plaintext
type: string
default: ln -f $$< $$$(g_target)
optional: True
```

miscellaneous

Backend gnumake

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.36 genemarks

geneMarkS

predict genes using geneMarkS

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.
run no help defined

Filesets

input Directory with the input files for Genemarks

Parameters

gff_source source field to use in the gff. Defaults to “geneMarkS”

 type: string
 default: genemarkS
 optional: True

matrix the matrix to use

 type: file
 default: ‘‘
 optional: True

miscellaneous

Backend ruff

Author

Creation date Wed Nov 10 07:56:48 2010
Modification date Wed Nov 10 07:56:48 2010

2.8.37 getorf

Getorf

 Predicts open reading frames using the EMBOSS [[emboss]] getorf tool.

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.
run no help defined
Filesets

gff

- **type**: map
- **source**: input
- **category**: output
- **optional**: {}
- **pattern**: /gff/*.gff

input
Input files for getorf

output

- **type**: map
- **source**: input
- **category**: output
- **optional**: {}
- **pattern**: /out/*.out

Parameters

circular
Is the sequence linear?

- **type**: set
- **default**: N
- **optional**: True

find
What to output? 0: Translation between stop codons, 1: Translation between start & stop codon, 2: Nucleotide sequence between stop codons; 3: Nucleotide sequence between start and stop codons. Default: 3

- **type**: set
- **default**: 3
- **optional**: True

gff_source
source field to use in the gff.

- **type**: string
- **default**: getorf
- **optional**: True

maxsize
maximal nucleotide size of the predicted ORF.
type: integer
default: 1000000
optional: True

minsize minimal nucleotide size of the predicted ORF.

type: integer
default: 30
optional: True

table Genetic code to use: 0 Standard; 1 Standard with alternative initiation codons; 2 Vertebrate Mitochondrial; 3 Yeast Mitochondrial; 4 Mold, Protozoan, Coelenterate Mitochondrial and Mycoplasma/Spiroplasma; 5 Invertebrate Mitochondrial; 6 Ciliate Macronuclear and Dasycladacean; 9 Echinoderm Mitochondrial; 10 Euplotid Nuclear; 11 Bacterial; 12 Alternative Yeast Nuclear; 13 Ascidian Mitochondrial; 14 Flatworm Mitochondrial; 15 Blepharisma Macronuclear; 16 Chlorophycean Mitochondrial; 21 Trematode Mitochondrial; 22 Scenedesmus obliquus; 23 Thraustochytrium Mitochondrial.

type: set
default: 11
optional: True

miscellaneous

Backend gnumake

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.38 glimmer3

Glimmer3

Predicts (prokaryotic) using glimmer3.

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run Glimmer3 is a open reading frame discovery program from the EMBOSS []emboss] package. It takes a set of input sequences and predicts all open reading frames. Additionally, this template converts the default output (predicted protein sequences) to GFF3.
Filesets

cds CDS output files from glimmer3

- type: map
- source: input
- category: output
- optional: True
- pattern: cds/*.fasta

gff GFF output files from glimmer3

- type: map
- source: input
- category: output
- optional: True
- pattern: gff/*.gff

input Directory with the input files for Glimmer3

output Raw output files from glimmer3

- type: map
- source: input
- category: output
- optional: True
- pattern: out/*.g3

pep peptide output files from glimmer3

- type: map
- source: input
- category: output
- optional: True
- pattern: pep/*.fasta

Parameters

gene_len Minimum gene length (glimmer3 -g|--gene_len)

2.8. Templates
type: integer
default: 110
optional: True

gff_source source field to use in the gff. Defaults to “glimmer3”

type: string
default: glimmer3
optional: True

max_overlap Maximum overlap, see the glimmer documentation for the -o or –max_olap parameter

type: integer
default: 50
optional: True

stop_codons stop codons

type: {}
default: tag,tga,taa,nnn,tnn,ann,gnn,cnn
optional: True

treshold treshold for calling a gene a gene (glimmer3 -t)

type: integer
default: 30
optional: True

miscellaneous

Backend ruff

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.39 gmap

Gmap
Run GMAP on an set of input files (query) vs a database index.

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run *no help defined*

Filesets

align

- type: map
- source: input
- category: output
- optional: {}
- pattern: */align/*.align

genepred

- type: map
- source: input
- category: output
- optional: {}
- pattern: */genepred/*.genepred

gff

- type: map
- source: input
- category: output
- optional: {}
- pattern: */gff/*.gff

gff_invert

- type: map
- source: input
- category: output
- optional: {}
- pattern: */gff/*.invert.gff

input Sequences to map

raw

- type: map
- source: input
- category: output
- optional: {}
- pattern: */raw/*.raw
Parameters

db Gmap db

 type: file
 default: ‘’
 optional: False

extra_parameters extra parameters to feed to gmap

 type: string
 default: ‘’
 optional: True

gff_source Source field to use in the output GFF

 type: string
 default: gmap
 optional: True

invert_gff Invert the GFF (T/F)

 type: set
 default: T
 optional: True

miscellaneous

Backend ruff

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.40 gmapdb

gmapdb index builder

 Builds gmapdb index from a reference sequence
Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run *no help defined*

Filesets

input The reference sequence to build a gmap database with.

```
type: single
category: input
optional: False
pattern: */*.fasta
```

Parameters

name Name of the gmap index to create

```
type: string
default: gmapdb
optional: True
```

miscellaneous

Backend ruff

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.41 gsMapper

GSMapper

Run the Roche GS Reference mapper

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run *no help defined*
Parameters

annotation Gene annotation file in the UCSC GenePred format

```
type: file
default: ''
optional: True
```

min_overlap_ident Minimum identity length in the assembly step

```
type: integer
default: 90
optional: True
```

min_overlap_len Minimum overlap length in the assembly step

```
type: integer
default: 40
optional: True
```

name Name identifying this mapping in the output gff

```
type: string
default: ''
optional: False
```

reference_fasta A multifasta file with the reference sequence(s) with the library id.

```
type: file
default: ''
optional: True
```

sffile SFF files with reads to map against the reference sequences

```
type: file
default: ''
optional: True
```
miscellaneous

Backend gnumake

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.42 h_blast

Hadoop Blast

Runs BLAST on a hadoop cluster

Commands

- **clean** Remove all job data, not the Moa job itself, note that this must be implemented by the template.
- **run** Similar to a normal blast, but now running on an hadoop cluster

Parameters

- **db** Location of the blast database

  ```
  type: file
  default: 
  optional: False
  ```

- **eval** e value cutoff

  ```
  type: float
  default: 1e-10
  optional: True
  ```

- **hadoop_base** location of the hadoop installation

  ```
  type: directory
  default: 
  optional: False
  ```

- **hdfs_base** hdfs://SERVER:PORT for the hdfs filesystem, defaults to “hdfs://localhost:9000”
type: string
default: hdfs://localhost:9000
optional: True

input_dir location of the hadoop installation

type: directory
default:
optional: False

input_extension input file extension

type: string
default: fasta
optional: True

nohits number of hits to report

type: integer
default: 50
optional: True

nothreads threads to run blast with (note the overlap with the Make -j parameter)

type: integer
default: 1
optional: True

program blast program to use (default: blastn)

type: set
default: blastn
optional: True

miscellaneous

Backend gnumake

Author Mark Fiers
2.8.43 hagfish

Run hagfish_extract & hagfish_combine

Run the preparatory steps for hagfish

Commands

clean remove all Hagfish files
finish finish up - find gaps - combine plots - create a report
run Run hagfish

Filesets

fasta fasta sequence of the reference

 type: single
 category: prerequisite
 optional: False
 pattern: {}

input “hagfish” input files
output “hagfish” touch files - track what files are done - please do not touch this!

 type: map
 source: input
 category: output
 optional: True
 pattern: ./touch/*.touch

Parameters

circosbinsize Binsize for generating circos formatted histograms

 type: int
 default: {}
 optional: True
max_ok Maximal acceptable insert size for an aligned pair. If omitted, hagfish will make an estimate

 type: int
 default: 0
 optional: True

min_ok Minimal acceptable insert size for an aligned pair. If omitted, hagfish will make an estimate

 type: int
 default: 0
 optional: True

miscellaneous

Backend ruff
Author Mark Fiers
Creation date Tue Mar 29 16:34:19 2011
Modification date Thu, 19 May 2011 20:49:04 +1200

2.8.44 kanga

 use kanga to align short reads to a reference genome

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.
run run kanga

Filesets

input_fasta Fasta input file
output output files

 type: map
 source: rds_input
 category: output
 optional: True
 pattern: /*.sam

output_bam output files
output_log output log file

```
type: map
source: rds_input
category: output
optional: True
pattern: */*.log.txt
```

rds_input rds (preprocessed) input files

sfx_input sfx array lookup file

Parameters

color_space process for colorspace (SOLiD)

```
type: boolean
default: False
optional: True
```

extra_params any extra parameters

```
type: string
default: ''
optional: True
```

help print this help and exit

```
type: boolean
default: False
optional: True
```

max_Ns maximum number of intermediate N’s in reads before treating read as unalignable

2.8. Templates
type integer
default: 1
optional: True

max_pair_len accept paired end alignments with apparent length of at most this

type integer
default: 300
optional: True

min_pair_len accept paired end alignments with apparent length of at least this

type integer
default: 100
optional: True

no_multireads do not accept multiple reads aligning to the same loci

type boolean
default: False
optional: True

out_format 0 - CSV loci only, 1 - CSV loci + match sequence, 2 - CSV loci + read sequence, 3 - CSV loci + read + match sequence, 4 - UCSC BED, 5 - SAM format

type integer
default: 0
optional: True

pe_mode 0 - none, 1 - paired ends with recover orphan ends, 2 - paired end no orphan recovery

type integer
default: 0
optional: True

quality fastq quality scoring- 0 - sanger, 1m - Illumina 1.3+, 2 - Solexa < 1.3, 3 - Ignore quality
thread_num number of processing threads (0 sets threads to number of CPU cores)

type: integer
default: 0
optional: True

trim3 trim this number of bases from 3’ end of reads when loading raw reads

type: integer
default: 0
optional: True

trim5 trim this number of bases from 5’ end of reads when loading raw reads

type: integer
default: 0
optional: True

version print version information and exit

type: boolean
default: False
optional: True

miscellaneous

Backend ruff

Author Mark Fiers, Yogini Idnani

Creation date Wed Nov 10 07:56:48 2010

Modification date unknown

2.8.45 kangar_pe

use kangar to pre process raw fq reads
Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run run kangar

Filesets

fq_forward_input fastq input files - forward - containing the 5’ end

fq_reverse_input fastq input files directory - reverse - containing the 3’ end

```
type: map
source: fq_forward_input
category: input
optional: True
pattern: */*_2.fq
```

output_log output log file

```
type: map
source: fq_forward_input
category: output
optional: {}
pattern: */*.log.txt
```

rds_output output rds file

```
type: map
source: fq_forward_input
category: output
optional: True
pattern: */*.rds
```

Parameters

extra_params any extra parameters

```
type: string
default: ''
optional: True
```
help print this help and exit

```
type: boolean
default: False
optional: True
```

mode processing mode 0 - single end create, 1 - paired end create, 2 - output statistics 3 - dump as fasta

```
type: integer
default: 0
optional: True
```

quality fastq quality scoring- 0 - sanger, 1m - Illumina 1.3+, 2 - Solexa < 1.3, 3 - Ignore quality

```
type: integer
default: 3
optional: True
```

reads_num limit number of reads (or dumps) in each input file to this many, 0 if no limit

```
type: integer
default: 0
optional: True
```

rm_duplicates remove duplicate reads retaining only one

```
type: boolean
default: False
optional: True
```

trim3 trim this number of bases from 3’ end of sequence

```
type: integer
default: 0
optional: True
```

trim5 trim this number of bases from 5’ end of sequence
version print version information and exit

type: boolean
default: False
optional: True

miscellaneous

Backend ruff

Author Mark Fiers, Yogini Idnani

Creation date Wed Nov 10 07:56:48 2010

Modification date unknown

2.8.46 kangar_se

use kangar to pre process raw fq single end reads

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run run kangar

Filesets

fq_input fastq input files - forward - containing the 5’ end

output_log output log file

rds_output output rds file
source: fq_input
category: output
optional: True
pattern: */.rds

Parameters

extra_params any extra parameters

type: string
default: ‘’
optional: True

help print this help and exit

type: boolean
default: False
optional: True

mode processing mode 0 - single end create, 1 - paired end create, 2 - output statistics 3 - dump as fasta

type: integer
default: 0
optional: True

quality fastq quality scoring- 0 - sanger, 1m - Illumina 1.3+, 2 - Solexa < 1.3, 3 - Ignore quality

type: integer
default: 3
optional: True

reads_num limit number of reads (or dumps) in each input file to this many, 0 if no limit

type: integer
default: 0
optional: True

rm_duplicates remove duplicate reads retaining only one

2.8. Templates
Moa Documentation, Release 0.11.0

- **type**: `boolean`
 - **default**: `False`
 - **optional**: `True`

trim3 trim this number of bases from 3’ end of sequence

- **type**: `integer`
 - **default**: `0`
 - **optional**: `True`

trim5 trim this number of bases from 5’ end of sequence

- **type**: `integer`
 - **default**: `0`
 - **optional**: `True`

- **version** print version information and exit

- **type**: `boolean`
 - **default**: `False`
 - **optional**: `True`

Miscellaneous

Backend ruff

Author Mark Fiers, Yogini Idnani

Creation date
Wed Nov 10 07:56:48 2010

Modification date
unknown

2.8.47 kangax

use kangax to create the suffix array lookup database for the reference genome

Commands

- **clean** Remove all job data, not the Moa job itself, note that this must be implemented by the template.
- **run** run kangax
Filesets

input_fastas Fasta input file

output_logs output log file

```python
type: map
source: input_fastas
category: output
optional: {}
pattern: */*.log.txt
```

output_sfx output suffix array lookup

```python
type: map
source: input_fastas
category: output
optional: {}
pattern: */*.sfx
```

Parameters

block_seq_len generated suffix blocks to hold at most this length (MB) concatenated sequences

```python
type: integer
default: 3300
optional: True
```

color_space generate for colorspace (SOLiD)

```python
type: boolean
default: False
optional: True
```

extra_params any extra parameters

```python
type: string
default: 
optional: True
```
help print this help and exit

 type: boolean
 default: False
 optional: True

reference_species reference species

 type: string
 default: ''
 optional: False

target_dep generate target file only if missing or older than any independent source files

 type: boolean
 default: False
 optional: True

version print version information and exit

 type: boolean
 default: False
 optional: True

miscellaneous

Backend ruff

Author Mark Fiers, Yogini Idnani

Creation date Wed Nov 10 07:56:48 2010

Modification date unknown

2.8.48 lftp

lftp

Use LFTP to download files. This template has two modi, one is set lftp_mode to mirror data, in which case both lftp_url and lftp_pattern (default *) are used. The other modus is lftp_mode=get, when one file defined by lftp_url is downloaded. In the mirror mode it is possible to download only those files that are newer as the files already downloaded by using the lftp_timestamp parameter
Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run execute the download

Parameters

dos2unix Run dos2unix to prevent problems with possible dos text files

```
type: set
default: F
optional: True
```

get_name target name of the file to download

```
type: string
default: 
optional: True
```

lftp_output_dir subdir to create & write all output to. If not defined, data will be downloaded to directory containing the Makefile

```
type: directory
default: .
optional: True
```

lock Lock this job after running. This means that you will have to manually unlock the job before lftp actually reruns. This is a good choice if your downloading large datasets or have a slow connection

```
type: set
default: T
optional: True
```

mode Mode of operation - mirror or get. Mirror enables timestamping. Get just gets a single file. If using get, consider setting depend_lftp_timestamp to F. When using get, the full url should be in lftp_url. lftp_pattern is ignored. Defaults to mirror.

```
type: set
default: get
optional: True
```
noclean set of files not to be deleted by the powerclean

 type: string
 default: moa.mk Makefile
 optional: True

pass password for the remote site, note that this can be defined on the commandline using: make lftp_pass=PASSWORD

 type: password
 default: ''
 optional: True

pattern glob pattern to download

 type: string
 default: '*'
 optional: True

powerclean Do brute force cleaning (T/F). Remove all files, except moa.mk & Makefile when calling make clean. Defaults to F.

 type: set
 default: F
 optional: True

timestamp Depend on lftp to decide if a file needs updating, else a touchfile is created that you need to delete or touch before updating (T/F)

 type: set
 default: F
 optional: True

url The base url to download from

 type: string
 default: ''
 optional: True
user username for the remote site

```
type: string
default: ''
optional: True
```

miscellaneous

Backend gnumake

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.49 map

Execute a “map” ad-hoc analysis

Execute one command, on a number of input files.

Commands

run no help defined

Filesets

input “map” input files

output “map” output files

```
type: map
source: input
category: output
optional: True
pattern: */
```

Parameters

dummy do a dummy run

```
type: boolean
default: False
optional: True
```
process The command to execute

 type: string
 default: True
 optional: False

miscellaneous

Backend ruff
Author Mark Fiers
Creation date Tue Mar 29 16:34:19 2011
Modification date Wed Mar 30 06:02:01 2011

2.8.50 map2

Execute a “map2” ad-hoc analysis

Execute one command, on a number of input files.

Commands

run no help defined

Filesets

input1 “map” input files set 1
input2 “map” input files set 2

 type: map
 source: input1
 category: input
 optional: False
 pattern: */*

output “map” output files

 type: map
 source: input1
 category: output
 optional: True
 pattern: /*
Parameters

process The command to execute

- *type: string*
- *default: True*
- *optional: False*

miscellaneous

Backend ruff

Author Mark Fiers

Creation date Tue Mar 29 16:34:19 2011

Modification date Wed Mar 30 06:02:01 2011

2.8.51 map22

Execute a “map22” ad-hoc analysis - two input files, two output files

Execute one command, on a number of input files.

Commands

run *no help defined*

Filesets

input1 “map” input files set 1

input2 “map” input files set 2

- *type: map*
- *source: input1*
- *category: input*
- *optional: False*
- *pattern: */*

output1 “map” output files

- *type: map*
- *source: input1*
- *category: output*
optional: True
pattern: */

output2 “map” output files

type: map
source: input1
category: output
optional: True
pattern: */

Parameters

process The command to execute

type: string
default: True
optional: False

miscellaneous

Backend ruff
Author Mark Fiers
Creation date Tue Mar 29 16:34:19 2011
Modification date Wed Mar 30 06:02:01 2011

2.8.52 maq_fasta2bfa

Convert fasta to bfa

Converts a FASTA file to MAQ format for use with a BFA a maq_fasta2bfa index from a reference sequence

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.
run no help defined

Filesets

bfa
2.8.53 maq_fastq2bfq

Convert FASTQ to BFQ

Converts a FASTQ file to MAQ BFQ format.

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.
run no help defined

Filesets

bfq

type: map
source: input
category: output
optional: {}

input input FASTA files

Parameters

miscellaneous

Backend gnumake
Author Mark Fiers
Creation date Wed Nov 10 07:56:48 2010
Modification date Wed Nov 10 07:56:48 2010
2.8.54 maq_match_pair

MAQ paired ends mapper

Map paired ends to a reference sequence using MAQ

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run no help defined

Parameters

forward_suffix Suffix of each forward filename - recognize forward files this way. Note this is not a regular extension, no . is assumed between the filename & suffix

type: string
default: _f.bfq
optional: True

maxdist max outer distance for a (non RF) readpair. This applies to illumina matepairs - i.e. short inserts

type: integer
default: 250
optional: True

read_dir directory containing the forward reads

type: string
default: ‘’
optional: False

reference Reference bfa file to map the reads to

type: string
default: ‘’
optional: False
reverse_suffix suffix of reverse files

- **type**: string
- **default**: ".r.bfq"
- **optional**: True

RF_maxdist max outer distance for an RF readpair (corresponds to the -A parameter). This applies to long insert illumina pairs

- **type**: integer
- **default**: 15000
- **optional**: True

miscellaneous

- **Backend**: gnumake
- **Author**: Mark Fiers
- **Creation date**: Wed Nov 10 07:56:48 2010
- **Modification date**: Wed Nov 10 07:56:48 2010

2.8.55 maq_pe

Generate alignments in SAM format given paired end reads using Maq.

Commands

- **clean**: Remove all job data, not the Moa job itself
- **run**: run maq’s fasta2bfa, fastq2bfq and map.

Filesets

- **bam_output**: bam alignment output file

 - **type**: map
 - **source**: fq_forward_input
 - **category**: output
 - **optional**: {} (empty)
 - **pattern**: */*.bam

- **bfa_output**: BFA Index name

2.8. Templates
type: single
category: other
optional: {}

bfq_forward_output bfq files - forward files

type: map
source: fq_forward_input
category: output
optional: {}

bfq_reverse_output bfq files - reverse files

type: map
source: fq_forward_input
category: output
optional: {}

fa_input directory with reference fasta file name

fq_forward_input fastq input files directory - forward files

fq_reverse_input fastq input files directory - reverse files

map_output maq map output files
Parameters

disable_sw disable Smith-Waterman alignment

 type: boolean
 default: False
 optional: True

extra_parameters Any extra parameters

 type: string
 default: ‘’
 optional: True

first_read_len length of the first read (<=127)s

 type: integer
 default: 0
 optional: True

match_in_colorspace match in the colorspace

 type: boolean
 default: False
 optional: True

max_dist_read_pairs max distance between two paired reads s

 type: integer
 default: 250
 optional: True

max_dist_RF_read_pairs max distance between two RF paired reads s

 type: integer
 default: 0
 optional: True
max_mismatch_qual_sum maximum allowed sum of qualities of mismatches

- **type**: integer
- **default**: 70
- **optional**: True

max_num_hits_out max number of hits to output. >512 for all 01 hits.

- **type**: integer
- **default**: 250
- **optional**: True

num_mismatch_24bp number of mismatches in the first 24bp

- **type**: integer
- **default**: 2
- **optional**: True

read_ref_diff_rate rate of difference between reads and references

- **type**: float
- **default**: 0.001
- **optional**: True

sec_read_len length of the second read (\(\leq 127\))

- **type**: integer
- **default**: 0
- **optional**: True

trim_all_reads trim all reads (usually not recommended)

- **type**: boolean
- **default**: False
- **optional**: True
miscellaneous

Backend ruff
Author Mark Fiers, Yogini Idnani
Creation date Wed Dec 03 17:06:48 2010
Modification date unknown

2.8.56 maq_se

Generate alignments in SAM format given single end reads using Maq.

Commands

clean Remove all job data, not the Moa job itself
run run maq’s fasta2bfa, fastq2bfq and map.

Filesets

bam_output bam alignment output file

type: map
source: fq_input
category: output
optional: {}
pattern:/*.bam

bfa_output BFA Index name

type: single
category: other
optional: {}
pattern: {}\n
bfq_output bfq files - forward files

type: map
source: fq_input
category: output
optional: {}
pattern:/*.bfq
fa_input directory with reference fasta file name

fq_input fastq input files

map_output maq map output files

```
type: map
source: fq_input
category: output
optional: {}
pattern: /*.map
```

Parameters

disable_sw disable Smith-Waterman alignment

```
type: boolean
default: False
optional: True
```

eextra_parameters other parameters

```
type: string
default: 
optional: True
```

match_in_colorspace match in the colorspace

```
type: boolean
default: False
optional: True
```

max_mismatch_qual_sum maximum allowed sum of qualities of mismatches

```
type: integer
default: 70
optional: True
```

max_num_hits_out number of mismatches in the first 24bp
type: integer
default: 250
optional: True

num_mismatch_24bp number of mismatches in the first 24bp

type: integer
default: 2
optional: True

read_ref_diff_rate rate of difference between reads and references

type: float
default: 0.001
optional: True

trim_all_reads trim all reads (usually not recommended)

type: boolean
default: False
optional: True

miscellaneous

Backend ruff

Author Mark Fiers, Yogini Idnani

Creation date Wed Dec 02 17:06:48 2010

Modification date unknown

2.8.57 moatest

Unit test template
 Not to be used - is used by unitmoatests

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run Do nothing - no need to call this.
Parameters

test_opt test variable

 type: string
 default: konijntje
 optional: True

txt test variable

 type: string
 default: ‘’
 optional: False

miscellaneous

Backend gnumake

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.58 **mummer**

mummer

 Run mummer between two sequences

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run Run mummer

Filesets

input Set 1 input fasta files

reference Set 1 input fasta files

Parameters

base base name for all generated files
type: {}
default: out
optional: True

breaklen Set the distance an alignment extension will attempt to extend poor scoring regions before giving up (default 200)

type: integer
default: 200
optional: True

genomecenter genome center - used in the AGP file

type: {}
default: pflnz
optional: True

gff_source GFF source field

type: {}
default: mumscaff
optional: True

linker linker sequence for the merged output sequence

type: {}
default: NNNNNNCTAGCTAGCATGNNNNNN
optional: True

matchmode use all matching fragments (max) or only unique matchers (mum)

type: set
default: mum
optional: True

mum_plot_raw plot an alternative visualization where mummer does not attempt to put the sequences in the correct order
type: boolean
default: False
optional: True

organism Organism name - used in the AGP file

```
**type**: {}
**default**: ''
**optional**: True
```

taxid Taxonomy id - used in the AGP file

```
**type**: {}
**default**: ''
**optional**: True
```

miscellaneous

Backend ruff

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.59 ncbi

Download data from NCBI

Download a set of sequences from NCBI based on a query string `ncbi_query` and database `ncbi_db`. This template will run only once, after a successful run it creates a lock file that you need to remove to rerun.

Commands

- **clean** Remove all job data, not the Moa job itself, note that this must be implemented by the template.
- **run** Download from NCBI

Parameters

- **db** NCBI database

 type: string
default: nucore
optional: True

query NCBI query (for example txid9397[Organism%3Aexp])

type: string
default: ‘’
optional: True

rename_sequence try to rename the sequence - note, this does not work if you are downloading more than one sequence

type: boolean
default: False
optional: True

sequence_name Name of the file to write the downloaded sequences to. Use ‘from_dir’ to have the sequence name extracted from the directory name

type: string
default: out
optional: True

miscellaneous

Backend ruff

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.60 newbler

Newbler

Run a simple, out of the box, newbler assembly. As an extra feature, this template automatically creates uniquely named links to the two main output fasta files (454AllContigs.fna, 454LargeContigs.fna). This is convenient for subsequence gather steps. The links are named after the directory.
Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run *no help defined*

Filesets

input input SFF files

Parameters

largecontig_cutoff min length of a contig in 454LargeContigs.fna

 * type: integer
 * default: ‘’
 * optional: True

library_name A library identifier for this assembly. This is used to create an extra fasta file, named using this variable, that contain the generated contigs with their ids prepended with the library id.

 * type: string
 * default: $(shell echo ‘basename $(CURDIR) | sed “s/[//][]/g”’)
 * optional: True

mid_configuration Mid configuration file to use

 * type: file
 * default: ‘’
 * optional: True

mids mids to use for this assembly

 * type: string
 * default: ‘’
 * optional: True

min_identity Minimal overlap identity used during assembly

 * type: integer
miscellaneous

Backend gnumake
Author Mark Fiers
Creation date Wed Nov 10 07:56:48 2010
Modification date Wed Nov 10 07:56:48 2010

2.8.61 newjobtest

Execute a “simple” ad hoc analysis

 Execute one command, No in or output files are tracked by Moa.

Commands

run no help defined

Parameters

process The command to execute

 type: string
 default: True
 optional: False

miscellaneous

Backend ruff
Author Mark Fiers
Creation date Tue Mar 29 16:34:19 2011
Modification date Wed Mar 30 06:02:01 2011

2.8.62 nstretch

Nstretch

 Run NSTRETCH on an set of input files

2.8. Templates
Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run *no help defined*

Parameters

input_dir input dir with the fasta files

- *type: directory*
- *default: ‘’*
- *optional: False*

input_extension extension of the input files

- *type: string*
- *default: fasta*
- *optional: True*

len minimal number of Ns before its reported (default 10)

- *type: integer*
- *default: 10*
- *optional: True*

miscellaneous

Backend gnumake

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.63 orthomcl

Run OrthoMCL

Execute one command, No in or output files are tracked by Moa.

Commands

run *no help defined*
Parameters

db Db name

 type: string
 default: {}
 optional: False

eval Eval cutoff for blast to use

 type: string
 default: 1e-5
 optional: True

group_prefix OrthoMCL prefix for group names

 type: string
 default: g_
 optional: True

host Db Host

 type: localhost
 default: {}
 optional: True

input_dir Input directory with compliant (read the manual) fasta files

 type: string
 default: {}
 optional: False

login Db username

 type: string
 default: None
 optional: False
mcl_i mcl -i value

 type: float
 default: 1.5
 optional: True

num_threads Number of threads to use

 type: integer
 default: 4
 optional: True

pass Db password

 type: string
 default: None
 optional: False

port Db port

 type: integer
 default: 3306
 optional: True

prefix OrthoMCL prefix for the database tables

 type: string
 default: ortho
 optional: True

vendor Db vendor

 type: string
 default: mysql
 optional: True
miscellaneous

Backend ruff

Author Mark Fiers

Creation date Tue Mar 29 16:34:19 2011

Modification date Wed Mar 30 06:02:01 2011

2.8.64 pregap

Pregap

Run Pregap. Note that running phrap could be a part of this.

Commands

- **clean** Remove all job data, not the Moa job itself, note that this must be implemented by the template.
- **run** *no help defined*

Parameters

- **cloning_vector** File containing the cloning vector

 type: *file*
 default: *''*
 optional: *False*

- **ecoli_screenseq** File containing ecoli screen sequences

 type: *file*
 default: *''*
 optional: *False*

- **input_dir** Directory with the input data

 type: *string*
 default: *''*
 optional: *False*

- **input_pattern** file name pattern
type: string
default: ''
optional: False

quality_value_clip quality cutoff

type: integer
default: 10
optional: True

repeat_masker_lib File with a repeatmasker library

type: file
default: ''
optional: False

sequencing_vector File containing the sequencing vector

type: file
default: ''
optional: False

template the template pregap config file to use. if not defined, Moa tries ./files/pregap.config.

type: file
default: ./files/pregap.config.
optional: True

vector_primerfile File with the vector primers

type: file
default: ''
optional: False

miscellaneous

Backend gnumake
Author Mark Fiers
2.8.65 project

Create a project

 Placeholder for a Moa Project

Commands

run This template does not do anything - it is a project placeholder.

Parameters

miscellaneous

Backend ruff

Author Mark Fiers

Creation date Tue, 10 Jan 2012 14:54:39 +1300
 Modification date Wed Nov 10 07:56:48 2010

2.8.66 reduce

Execute a “reduce” ad-hoc analysis

 Execute one command, on a number of input files.

Commands

run no help defined

Filesets

input “reduce” input files

output “reduce” output files

 type: single
 category: output
 optional: True
 pattern: */
Parameters

process The command to execute

- **type**: string
- **default**: True
- **optional**: False

miscellaneous

Backend ruff

Author Mark Fiers

Creation date Tue Mar 29 16:34:19 2011

Modification date Wed Mar 30 06:02:01 2011

2.8.67 sam2bam

Convert SAM to BAM using samtools

Converts a FASTQ file to MAQ BFQ format.

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run *no help defined*

Filesets

input input SAM files

output

- **type**: map
- **source**: input
- **category**: output
- **optional**: {}
- **pattern**: */.bam

Parameters

miscellaneous

Backend gnumake

Author Mark Fiers
2.8.68 samtools_pileup

Print the alignment in the pileup format.

Commands

clean Remove all job data, not the Moa job itself

run run samtools pileup command

Filesets

fasta reference fasta file

tyep: *single* category: *prerequisite* optional: *True* pattern: */*.fasta

input bam or sam files

output

tyep: *map* source: *input* category: *output* optional: {} pattern: */*.pileup

output_bam

tyep: *map* source: *input* category: *output* optional: {} pattern: */*.sorted

Parameters

cap_mapQ_at cap mapping quality at INT

tyep: *integer* default: 60
optional: True

extra_params any extra parameters

type: string
default: ‘’
optional: True

filter_read_bits filtering reads with bits in INT

type: integer
default: 1796
optional: True

input_is_SAM the input is in SAM

type: boolean
default: False
optional: True

num_haplotypes number of haplotypes in the sample (for -c/-g)

type: integer
default: 2
optional: True

out_2nd_best output the 2nd best call and quality

type: boolean
default: False
optional: True

out_GLFv3_format output in the GLFv3 format (suppressing -c/-i/-s)

type: boolean
default: False
optional: True
out_maq_consensus output the maq consensus sequence

type: boolean
default: False
optional: True

phred_prob_indel phred prob. of an indel in sequencing/prep. (for -c/-g)

type: integer
default: 40
optional: True

print_variants_only print variants only (for -c)

type: boolean
default: False
optional: True

prior_diff_haplotypes phred prob. of an indel in sequencing/prep. (for -c/-g)

type: float
default: 0.001
optional: True

prior_indel_haplotypes number of haplotypes in the sample (for -c/-g)

type: float
default: 0.00015
optional: True

show_lines_indels only show lines/consensus with indels

type: boolean
default: False
optional: True

simple_pileup_format simple (yet incomplete) pileup format
theta_maq_model number of haplotypes in the sample (for -c/-g)

type: float
default: 0.85
optional: True

use_SOAPsnp_model use the SOAPsnp model for SNP calling

type: boolean
default: False
optional: True

miscellaneous

Backend ruff

Author Yogini Idnani, Mark Fiers

Creation date Wed Dec 15 17:06:48 2010

Modification date unknown

2.8.69 sffinfo

sffinfo

Roche sffinfo tool - extract information from sff files

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run Use the Roche sffinfo tool to extract reads, quality scores, flowgrams and accession ids from one or more sff files

Filesets

accession

type: map
source: input
category: output
optional: {}
pattern: */.acc

flowgram

type: map
source: input
category: output
optional: {}
pattern: */.flow

input Sff input files

quality

type: map
source: input
category: output
optional: {}
pattern: */.qual

sequence

type: map
source: input
category: output
optional: {}
pattern: */.reads

Parameters

accessions Output the accessions

 type: set
default: T
 optional: True

flowgrams output the flowgrams

 type: set
default: F
 optional: True

quality Output quality scores

 type: set
sequences Output the sequences

 type: set
 default: T
 optional: True

untrimmed output untrimmed sequences & qualities

 type: set
 default: F
 optional: True

miscellaneous

Backend gnumake

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.70 simple

Execute a “simple” ad hoc analysis

 Execute one command, No in or output files are tracked by Moa.

Commands

run no help defined

Parameters

process The command to execute

 type: string
 default: True
 optional: False
miscellaneous

Backend ruff
Author Mark Fiers
Creation date Tue Mar 29 16:34:19 2011
Modification date Wed Mar 30 06:02:01 2011

2.8.71 smalt_pe

Run SMALT on an set of input files (query) vs a database index.

Commands

clean Remove all job data, not the Moa job itself
run Execute SMALT with with paired-end fastq

Filesets

db The (basename of the) smalt database to use.

 type: single
 category: prerequisite
 optional: False
 pattern: ../10.smaltdb/db

fasta reference fasta file

 type: single
 category: prerequisite
 optional: False
 pattern: *.*fasta

fq_forward_input fastq input files directory - forward
fq_reverse_input fastq input files directory - reverse

 type: map
 source: fq_forward_input
 category: input
 optional: True
 pattern: */*_2.fq
output output BAM file (automatically converted & filtered for reads that to not map)

```
type: map
source: fq_forward_input
category: output
optional: {}
pattern: */*.sam
```

Parameters

extra_params extra parameters to feed to smallt

```
type: string
default: ''
optional: True
```

max_insertsize Maximum allowed insertsize

```
type: integer
default: 250
optional: True
```

min_insertsize Minimum allowed insertsize

```
type: integer
default: 1
optional: True
```

output_format output format (sam or samsoft)

```
type: {}
default: sam
optional: True
```

pairtype pair type (pe: fr/illumina short; mp: rf/illumina mate pairs or pp: ff)

```
type: {}
default: pe
```
optional: True

threads No threads to use

type: int
default: 4
optional: True

miscellaneous

Backend ruff

Author Mark Fiers

Creation date Tue, 27 Mar 2012 10:05:40 +1300

Modification date Tue, 27 Mar 2012 10:31:09 +1300

2.8.72 smaltdb

Smalt index builder

Builds a smalt index from a reference sequence

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run Create the smalt index

Filesets

input Input fasta file for the smalt database

type: single
category: input
optional: False
pattern: */*.fasta

output database name to create

type: single
category: output
optional: {}
pattern: db
Parameters

word_length word length

- type: `int`
- default: 10
- optional: True

word_spacing word spacing

- type: `int`
- default: 6
- optional: True

miscellaneous

Backend ruff

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Dec 09 07:56:48 2010

2.8.73 soapdenovo_pe

- Run Soapdenovo

Commands

clean Remove all job data

run Execute soapdenovo in paired-end mode

Filesets

fq_forward fastq input files directory - forward

fq_reverse fastq input files directory - reverse

- type: `map`
- source: `fq_forward`
- category: `input`
- optional: True
- pattern: `/*_2.fq`
output soap denovo output file

```
type: single
category: output
optional: True
pattern: {}
```

Parameters

avg_insert library insert size

```
type: integer
default: 200
optional: {}
```

executable which executable to use (SOAPdenovo-127mer, SOAPdenovo-31mer or SOAPdenovo-63mer)

```
type: {}
default: SOAPdenovo-31mer
optional: True
```

kmer kmer size

```
type: integer
default: 31
optional: True
```

skip_config_file skip automatic config file generation - if you skip this, make sure that you have a soap.config configuration file in the current directory

```
type: boolean
default: False
optional: True
```

threads no threads to use

```
type: integer
```
default: 8
optional: True

miscellaneous

Backend ruff
Author Mark Fiers
Creation date Mon, 21 Nov 2011 12:47:16
Modification date Mon, 21 Nov 2011 12:47:22

2.8.74 statsidx

Retrieve and print stats from BAM file to an index file

Commands

- **clean** Remove all job data, not the Moa job itself
- **run** run samtools idxstats

Filesets

- **input** bam input files directory - forward files
- **output**
 - **type**: map
 - **source**: input
 - **category**: output
 - **optional**: {}
 - **pattern**: */*.index

Parameters

miscellaneous

Backend ruff
Author Yogini Idnani, Mark Fiers
Creation date Wed Dec 08 17:06:48 2010
Modification date unknown
2.8.75 sync

Sync directories

Create this directory in sync with another directory

Commands

run Sync!

Parameters

ignore ignore these names (space separated list)

type: {}
default: ''
optional: True

original The local directory to use as a source. If the target (based on what is in the source) does not exist, this directory is copied. If the target exists - only the configuration is copied, and all directory contents are left alone. If this parameter is omitted, the directory with the most recently changed moa configuration.

type: string
default: {}'
optional: True

recursive copy the jobs/config recursively

type: boolean
default: False
optional: True

source The directory to keep in sync with

type: string
default: {}
optional: False
miscellaneous

Backend ruff
Author Mark Fiers
Creation date Thu, 30 Jun 2011 21:26:19
Modification date Thu, 30 Jun 2011 21:25:53

2.8.76 unittest

Template used in testing - has no other purpose

Commands

clean Remove all job data
prepare prepare for the unittest
run Prepare & Run

run delegates execution to: prepare, run2

run2 actually run

Filesets

input_1 Input file set 1
input_2 Input file set 2

type: map
source: input_1
category: input
optional: {}
pattern: in2/*_2.txt

output output files

type: map
source: input_1
category: output
optional: {}
pattern: */*.out
Parameters

test_string Test string values

 type: string
 default: {}
 optional: True

miscellaneous

Backend ruff

Author Yogini Idnani, Mark Fiers

Creation date Wed Nov 25 17:06:48 2010

Modification date unknown

2.8.77 varscan

Varscan

Run VARSCAN to detect snps

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run no help defined

Parameters

extra_params location of varscan.pl, defaults to /usr/lib/perl5/site_perl/5.8.8/varscan.pl

 type: string
 default: ‘’
 optional: True

input_file Varscan input alignments file

 type: file
 default: ‘’
 optional: True

output_name Base name of the output files
type: string
 default: out
 optional: True

perl_file the varscan (perl) executable

 type: file
 default: '
 optional: True

miscellaneous

Backend gnumake

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.78 vpcr

VPCR

Virtual PCR, based on Bowtie

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.

run Predict the fragments that would be generated by a PCR

Parameters

bowtie_db Location of the bowtie database used for the vpcr

 type: file
 default: '
 optional: True

insert_max maximum insert size for a vpcr fragment

 type: integer
 default: 10000
 optional: True
insert_min minimal insert size for a fragment

 type: integer
 default: 10
 optional: True

primer_1 First primer to use

 type: string
 default: ‘’
 optional: False

primer_2 Second primer to use

 type: string
 default: ‘’
 optional: False

miscellaneous

Backend gnumake
Author Mark Fiers
Creation date Wed Nov 10 07:56:48 2010
Modification date Wed Nov 10 07:56:48 2010

2.8.79 vpcr_list

Virtual PCR, based on Bowtie

Commands

clean Remove all job data, not the Moa job itself, note that this must be implemented by the template.
run Predict the fragments that would be generated by a PCR

Parameters

bowtie_db Location of the bowtie database used for the vpcr

 type: file
default: ‘’
optional: False

insert_max maximum insert size for a vpcr fragment

type: integer
default: 10000
optional: True

insert_min minimal insert size for a fragment

type: integer
default: 10
optional: True

primer_list List of primers to check

type: file
default: {}
optional: False

miscellaneous

Backend gnumake

Author Mark Fiers

Creation date Wed Nov 10 07:56:48 2010

Modification date Wed Nov 10 07:56:48 2010

2.8.80 wget

wget

Use WGET to download files. This template has two modi, one is set wget_mode to mirror data, in which case both wget_url and wget_pattern (default *) are used. The other modus is wget_mode=get, when one file defined by wget_url is downloaded. In the mirror mode it is possible to download only those files that are newer as the files already downloaded by using the wget_timestamp parameter

Commands

run Download
Parameters

pass Password for the remote site (note - this is not very safe, the password will be stored in plan text

```
type: password
default: ''
optional: True
```

url The url of the file to download

```
type: string
default: {}
optional: False
```

user Username for the remote site

```
type: string
default: ''
optional: True
```

miscellaneous

Backend ruff

Author Mark Fiers

Creation date Thu, 02 Jun 2011 10:22:31 +1200

Modification date Thu, 02 Jun 2011 10:22:53 +1200

2.9 Moa API

2.9.1 moa.actor

‘Simple’ wrapper around subprocess to execute code

```
moa.actor.getLastStderr(job)
  Get the last stderr

moa.actor.getLastStdout(job)
  Get the last stdout

moa.actor.getRecentOutDir(job)
  Return the most recent output directory
```
moa.actor.simpleRunner(wd, cl, conf={}, **kwargs)

Don’t think - just run - here & now

what does this function do? - put env in the environment - Execute the commandline (in cl) - store stdout & stderr in log files - return the rc

2.9.2 moa.commands

Handle Moa commands (i.e. anything that you can run as moa COMMAND on the commandline

2.9.3 moa.job

class moa.job.Job(wd)

Class defining a single job

Note - in the moa system, there can be only one current job - many operations try to access the job in sysConf

```python
>>> wd = tempfile.mkdtemp()
>>> job = Job(wd)
>>> assert (isinstance(job, Job))
>>> assert (job.template.name == 'nojob')
```

checkCommands(command)

Check command, and rearrange if there are delegates.

```python
>>> job = newTestJob('unittest')
>>> assert (job.template.commands.run.delegate == ['prepare', 'run2'])
>>> assert (job.checkCommands('run2') == ['run2'])
>>> assert (job.checkCommands('run') == ['prepare', 'run2'])
>>> assert (job.checkCommands('prepare') == ['prepare'])
```

Parameters commands (list of strings) – The list of commands to check

Returns The checked list of commands

Return type list of strings

checkConfDir()

Check if the configuration directory exists. If not create it.

```python
>>> job = newTestJob('unittest')
>>> confdir = os.path.join(job.wd, '.moa')
>>> assert (os.path.exists(confdir))
>>> import shutil
>>> shutil.rmtree(confdir)
>>> assert (os.path.exists(confdir) == False)
>>> job.checkConfDir()
>>> assert (os.path.exists(confdir))
```

defineCommands(commandparser)

Register template commands with the argparser

defineOptions(parser)

Set command line options - deferred to the backend - PER COMMAND
```python
>>> job = newTestJob('unittest')
>>> import optparse
>>> parser = optparse.OptionParser()
>>> job.defineOptions(parser)
```

execute (job, args, **kwargs)

Execute command in the context of this job. Execution is always deferred to the backend

#Note: Uncertain how to test verbose & silent

Parameters

- `verbose (Boolean)` – output lots of data
- `silent (Boolean)` – output nothing

```python
finishExecute()
```

Finish the run!

```python
getFiles()
```

Return all moa files - i.e. all files crucial to this job.

hasCommand (command)

Check if this job defines a certain command

> Warning: THIS METHOD DOES NOT WORK PROPERLY YET

```python
>>> job = newTestJob('unittest')
>>> assert job.hasCommand('run'))
>>> assert not job.hasCommand('dummy'))
```

initialize ()

Initialize a new job in the current wd

```python
isMoa ()
```

Check if this is a Moa directory - Currently, this needs to be overridden #weird; uncertain if this ever gets called

loadBackend ()

load the backend

loadTemplate ()

Load the template for this job, based on what configuration can be found

loadTemplateMeta ()

Load the template meta data for this job, based on what configuration can be found

prepareExecute ()

Give this job a chance to prepare for execution.

refreshTemplate ()

Reload the template into the local .moa/template.d directory

```python
>>> job = newTestJob('unittest')
>>> templateFile = os.path.join(job.confDir, 'template.d', 'unittest.jinja2')
>>> assert os.path.exists(templateFile))
>>> os.unlink(templateFile)
>>> assert not os.path.exists(templateFile))
```
>>> job.refreshTemplate()
>>> assert os.path.exists(templateFile))

run_hook (hook, **kwargs)
Shortcut to run a job plugin hook

setTemplate (name, provider=None)
Set a new template for this job

>>> job = newTestJob('unittest')
>>> job.setTemplate('adhoc')
>>> afile = os.path.join(job.confDir, 'template.d', 'adhoc.mk')
>>> assert os.path.exists(afile))

moa.job.newJob (wd, template, title, parameters=[], provider=None)
Create a new job in the wd and return the proper job object currently only makefile jobs are supported - later we’ll scan the template, and instantiate the proper job type

>>> wd = tempfile.mkdtemp()
>>> job = newJob(wd, template='blast', title='test')
>>> assert isinstance(job, Job))
>>> assert (job.template.name == 'blast')
>>> assert job.conf.title == 'test')

Parameters
- wd – Directory to create this job in, note that this directory must already exists
- template (String) – Template name for this job
- parameters (list of (key, value) tuples) – A list of parameters to set for this job

Return type instance of moa.job.Job

moa.job.newTestJob (template, title='Test job', provider=None)
for testing purposes - creates a temporary directory and uses that to instantiate a job. This function returns the job object created

>>> job = newTestJob(template = 'adhoc', title='test title')
>>> assert (isinstance(job, Job))
>>> assert (os.path.exists(job.wd))
>>> assert (job.conf.title == 'test title')
>>> assert (os.path.exists(os.path.join(job.wd, '.moa')))}
>>> assert (os.path.exists(os.path.join(job.wd, '.moa', 'template')))}
>>> assert (job.template.name == 'adhoc')

Returns the created job

Return type instance of moa.job.Job

2.9.4 moa.jobConf

moa job configuration
class moa.jobConf.JobConf(job)

to distinguish between attributes of this object & proper job configuration parameters

 doNotCheck = None
 these fields are not be type-checked

 doNotSave = None
 these fields are not to be saved

 getRendered(key)
 Get the rendered value of this key

 isEmpty()
 Check if the config is empty is empty

 isPrivate(k)
 Is this a private variable? can be locally defined or in the template definition

 keys()
 return a dict with all known parameters and values, either defined in the job configuration of
 the template

 load(confFile, delta=None)
 Load a configuration file

 Parameters delta – if a value appears to be a relative path, try to correct for this.
 Currently this only works for files that exist. i.e.

 private = None
 these fields are private (i.e. not to be displayed by default)

 save()
 Save the conf to disk

 setRecursiveVar(k, v)
 Register a recursive variable

2.9.5 moa.sysConf

Store Moa wide configuration

2.9.6 moa.ui

communicate information to the user

2.9.7 moa.utils

A set of random utilities used by Moa

moa.utils.deprecated(func)
 Decorator function to flag a function as deprecated

 Parameters func – any function

moa.utils.flog(f)
 A simple logger - uses the moa.logger code to log the calling function. Use as a decorator:
def any_function(*args):
...

This is for debugging purposes (obviously)

Parameters func – Any python function

moa.utils.getMoaBase()

Return MOABASE - the directory where Moa is installed. This function also sets an environment variable MOABASE

>>> d = getMoaBase()
>>> assert(os.path.isdir(d))
>>> assert(os.path.isfile(os.path.join(d, 'README')))
>>> assert(os.path.isdir(os.path.join(d, 'lib')))

Return type string (path)

moa.utils.getProcessInfo(pid)

Return some info on a process

moa.utils.moaDirOrExit(job)

Check if the job contains a proper Moa job, if not, exit with an error message and a non-zero exit code.

Parameters job – An instance of moa.job.Job

moa.utils.simple_decorator(decorator)

This decorator can be used to turn simple functions into well-behaved decorators, so long as the decorators are fairly simple. If a decorator expects a function and returns a function (no descriptors), and if it doesn’t modify function attributes or docstring, then it is eligible to use this. Simply apply @simple_decorator to your decorator and it will automatically preserve the docstring and function attributes of functions to which it is applied.

Note; I got this code from somewherre, but forgot where exactly. This seems the most likely source:

http://svn.navi.cx/misc/trunk/djblets/djblets/util/decorators.py

2.9.8 moa.template

moa.template

Store information on a template. This module is also responsible for retrieving template information.

moa.template.initTemplate(*args, **kwargs)

moa.template.installTemplate(wd, tName, provider=None)

Initialize the template - this means - try to figure out where the template came from & copy the template files into job/.moa/template & job/.moa/template.d/extra.

Currently all templates come from the moa repository. In the future, multiple sources must be possible
>>> import tempfile

>>> wd = tempfile.mkdtemp()

>>> installTemplate(wd, 'adhoc')

>>> templateFile = os.path.join(wd, '.moa', 'template')

>>> adhocFile = os.path.join(wd, '.moa', 'template.d', 'adhoc.mk')

>>> assert(os.path.exists(templateFile))

>>> assert(os.path.exists(adhocFile))

moa.template.template.refresh(wd)

Refresh the template - try to find out what the template is from {{wd}}/.moa/template.d/meta. If that doesn’t work, revert to the default template. If default is not specified - exit with an error

>>> import tempfile

>>> wd = tempfile.mkdtemp()

>>> installTemplate(wd, 'adhoc')

>>> templateFile = os.path.join(wd, '.moa', 'template')

>>> adhocFile = os.path.join(wd, '.moa', 'template.d', 'adhoc.mk')

>>> os.unlink(adhocFile)

>>> os.unlink(templateFile)

>>> assert(not os.path.exists(templateFile))

>>> assert(not os.path.exists(adhocFile))

>>> refresh(wd)

>>> assert(os.path.exists(templateFile))

>>> assert(os.path.exists(adhocFile))

moa.template.template

Store information on a template. This module is also responsible for retrieving template information.

class moa.template.template.Template(templateFile)

Template extends Yaco

getRaw()
Return a Yaco representation of the yaml-template, without any of this Template processing. This is really useful when processing a template that needs to be written back to disk

>>> import moa.job

>>> job = moa.job.newTestJob(template='adhoc')

>>> raw = job.template.getRaw()

>>> assert(isinstance(raw, Yaco.Yaco))

>>> assert(raw.has_key('parameters'))

2.9.9 moa.template.provider

moa.provider.core

Provides templates from the Moa package.

2.9.10 moa.backend

Ruff

Ruffus (and Jinja) Backend
metavar - Create a number of meta variables

Set a number of meta variables to be used in job configuration. Variable that are currently created are:

(Assuming we’re in the directory: `/tmp/this/is/a/test`)

- `name of the current directory`. In the example, `name of the current directory` renders to `test`
- `name of the parent directory` - (example: `a`)
- `name of the parent directory` - (example: `is`)

`dir1` same as `_`

`dir2` same as `___`

`dir3` same as `___`

`dir4` parent directory of `dir3`

Also a number of contextual variables are defined. In the same example as above, based on the directory name, the following variables are defined:

- `__tmp`: `/tmp`
- `__this`: `/tmp/this`
- `__is`: `/tmp/this/is`
- `__a`: `/tmp/this/is/a`
- `__test`: `/tmp/this/is/a/test`

Note that numerical prefixes are stripped from directory names. So, for example: `/tmp/this/10.is/444.a/test` would result in the same variables names as mentioned above (but with different directories). Also, `[^A-Za-z0-9_]` in variable names are converted to underscores to become valid python variable names.

(for backwards compatibility - `__tmp` versions are also defined with the same value)

Additional contextual variables are, based on the following example directory structure (with `cwd` being `/tmp/test/20.dirc/20.subb/`):

```
/tmp/test/00.dira/
/tmp/test/10.dirb/
/tmp/test/20.dirc/
/tmp/test/20.dirc/10.suba/
/tmp/test/20.dirc/20.subb/
/tmp/test/20.dirc/30.subc/
/tmp/test/20.dirc/40.subd/
/tmp/test/30.dird/
```

`f`: `10.suba _p`: `10.suba _n`: `30.subc _l`: `40.subd`

_ff: 00.dira _pp: 10.dirb _nn: 30.dird _ll: 30.dird

Equivalently, ___first, ___prev, ___next and ___last are also defined.
Note that all directory orders are based on an alphanumerical sort of directory names. 9.dir comes after 10.dir. (so use 09.dir).
The latter definitions override the earlier ones.

adhoc - create jobs from adhoc bash code

moa.plugin.system.adhoc.createAdhoc(job)
 Creates an adhoc job.

moa.plugin.system.adhoc.createMap(job, args)
 create an adhoc moa ‘map’ job
 Moa will query the user for process, input & output files. An example session

moa.plugin.system.adhoc.createReduce(job)
 Create a ‘reduce’ adhoc job.
 There are a number of ways this command can be used:

 $ moa reduce -t ‘a title’ -- echo ‘define a command’

 Anything after – will be the executable command. If omitted, Moa will query the user for a command.
 Moa will also query the user for input & output files. An example session:

 $ moa map -t ‘something intelligent’
 process:
 > echo ‘processing {{ input }} {{ output }}’
 input:
 > ../10.input/*.txt
 output:
 > ./*.out

 Assuming you have a number of text files in the ../10/input/ directory, you will see, upon running:

 processing ../10.input/test.01.txt ./test.01.out
 processing ../10.input/test.02.txt ./test.02.out
 processing ../10.input/test.03.txt ./test.03.out
 ...

moa.plugin.system.adhoc.exclamate(job, args)
 Create a ‘simple’ job from the last command issued.
 Set the **process** parameter to the last issued command. If a moa job exists in the current directory, then the **process** parameter is set without questions. (even if the Moa job in question does not use the **process** parameter). If no moa job exists, a **simple** job is created first.
 Note: This works only when using bash and if moainit is sourced properly. moainit defines a bash function _moa_prompt that is called every time a command is issued (using
$PROMPT_COMMAND). The _moa_prompt function takes the last command from the bash his-
tory and stores it in ~/.config/moa/last.command. Additionally, the _moa_prompt function stores
all commands issued in a Moa directory in .moa/local_bash_history.

moa.plugin.system.adhoc.exclamateInJob (job, args, command)
Reuse the last issued command: set it as the ‘process’ parameters in the current job

moa.plugin.system.adhoc.exclamateNoJob (job, args, command)
Create a “simple” job & set the last command to the ‘process’ parameter

moa.plugin.system.adhoc.simple (job, args)
Create a ‘simple’ adhoc job.

Simple meaning that no in or output files are tracked. Moa will query you for a command to
eexecute (the process parameter).

configure - Configure jobs

Control job configuration

moa.plugin.system.configure.hook_git_finish_set ()
Execute just after setting a parameter

moa.plugin.system.configure.set (job, args)
Set one or more variables

This command can be used in two ways. In its first form both parameter key and value are defined
on the command line: moa set KEY=VALUE. Note that the command line will be processed by
bash, which can either create complications or prove very useful. Take care to escape variables
that you do not want to be expandend and use single quotes where necessary. For example, to
include a space in a variable: moa set KEY='VALUE WITH SPACES'.

Alternative use of the set command is by just specifying the key: ‘moa set PARAME-
TER_NAME’, in which case Moa will prompt the user enter a value - circumventing problems
with bash interpretation.

moa.plugin.system.configure.show (job, args)
Show all parameters know to this job.

Parameters in bold are specifically configured for this job (as opposed to those parameters that are
set to their default value). Parameters in red are not configured, but need to be for the template to
operate. Parameters in blue are not configured either, but are optional.

moa.plugin.system.configure.unset (job, args)
Remove a parameter from the configuration

Remove a configured parameter from this job. In the parameter was defined by the job template,
it reverts back to the default value. If it was an ad-hoc parameter, it is lost from the configuration.

doc - Manage job documentation

Manage project / title / description for jobs

moa.plugin.system.doc.blog (job, args)
Add an entry to the blog job (Blog.md)

Allows a user to maintain a blog for this job (in Blog.md). Use as follows:
$ moa blog
Enter your blog message (ctrl-d on an empty line to finish)

... enter your message here ..

[ctrl-d]

Note: the ctrl-d needs to be given on an empty line. The text is appended to moa.description. In the web interface this is converted to Markdown.

moa.plugin.system.doc.change (job, args)
Add entry to CHANGELOG.md

This function allows the user to add an entry to CHANGELOG.md (including a timestamp). Use it as follows:

$ moa change
Enter your changelog message (ctrl-d on an empty line to finish)

... enter your message here ..

[ctrl-d]

Note: the ctrl-d needs to be given on an empty line. The text is appended to moa.description. In the web interface this is converted to Markdown.

Note the same can be achieved by specifying the -m parameter (before the command - for example:

moa -m 'intelligent remark' set ...

extraCommands - Pre & Post commands

Allow execution of a bash oneline before & after job completion

moa.plugin.system.extraCommands.hook_postRun()
If defined, execute the postCommand

moa.plugin.system.extraCommands.hook_preRun()
If defined, execute the precommand
moa.plugin.system.extraCommands.postcommand(job, args)
 Execute 'postcommand'

moa.plugin.system.extraCommands.precommand(job, args)
 Execute 'precommand'

fileset - define sets of in&output files

moa.plugin.system.fileset.files(job, args)
 Show in and output files for this job
 Display a list of all files discovered (for input & prerequisite type filesets) and inferred from these
 for map type filesets.

help - generate help

moa.plugin.system.help.pager(template, templateData)
 render the template & send it to the pager

moa.plugin.system.help.templateHelp(job)

moa.plugin.system.help.welcome(job)
 print a welcome message

info - Job information

Print info on Moa jobs and Moa

moa.plugin.system.info.err(job, args)
 Show the stderr of the most recently executed moa job

moa.plugin.system.info.out(job, args)
 Show the stdout of the most recently executed moa job

moa.plugin.system.info.tree(job, args)
 Show a directory tree and job status

moa.plugin.system.info.version(job, args)
 print moa version number

lock - Lock/Unlock moa jobs

moa.plugin.system.lock.lock(job, args)
 Lock a job - prevent execution

moa.plugin.system.lock.unlock(job, args)
 Unlock a job - allow execution

logger - Log Moa activity

moa.plugin.system.logger.log(job, args)
 Show activity log
Shows a log of moa commands executed. Only commands with an impact on the pipeline are logged, such as `moa run` & `moa set`.

```
moa.plugin.system.logger.niceRunTime(d)
```

Nice representation of the run time, d is time duration string

moautil - Some extra utilities - copy/move jobs

```
moa.plugin.system.moautil.archive(job, args)
```

Archive a job, or tree with jobs for later reuse.

This command stores only those files that are necessary for execution of this job, that is: templates & configuration. In & output files, and any other file are ignored. An exception to this are all files that start with `moa`. If the `name` is omitted, it is derived from the `jobid` parameter.

It is possible to run this command recursively with the `-r` parameter - in which case all (moa job containing) subdirectories are included in the archive.

```
moa.plugin.system.moautil.cp(job, args)
```

Copy a moa job, or a tree with jobs (with `-r`).

`moa cp` copies only those files defining a job: the template files and the job configuration. Additionally, all files in the moa directory that start with `moa`. (for example `moa.description` are copied as well. Data and log files are not copied! If used in conjunction with the `-r` (recursive) flag the complete tree is copied.

```
moa.plugin.system.moautil.mv(job, args)
```

Move, rename or renumber a moa job.

newjob - Instantiate new jobs

```
moa.plugin.system.newjob.new(job, args)
```

Create a new job.

This command creates a new job with the specified template in the current directory. If the directory already contains a job it needs to be forced using `-f`. It is possible to define arguments for the job on the commandline using KEY=VALUE after the template. Note: do not use spaces around the `=` sign. Use quotes if you need spaces in variables (KEY='two values')

parameterCheck - check parameters

```
moa.plugin.system.parameterCheck.hook_promptSnippet()
```

Function used by the prompt plugin to generate snippets for inclusion in the prompt

```
moa.plugin.system.parameterCheck.test(job, args)
```

Test the job parameters

project - Simple plugin to ease maintaining project data

Have more plans for this plugin - but for now it defines the following two variables to use in the job configuration

- `_p`: directory of the parent project
• project: the ‘title’ variable of the first parent project

status - Job Status

Possible job states:

- waiting - not yet executed
- running - is currently being executed
- success - finished successfully
- error - finished with an error
- interrupted - manual interruption

```
moa.plugin.system.status.kill(job, args)
```

Kill a running job.

This command checks if a job is running. If so - it tries to kill it by sending SIGKILL (-9) to the job.

```
moa.plugin.system.status.pause(job, args)
```

Pause a running job

```
moa.plugin.system.status.resume(job, args)
```

Resume a running job

```
moa.plugin.system.status.status(job, args)
```

Show job status

Print a short status of the job, including configuration

template - information on templates

```
moa.plugin.system.template.list(job, args)
```

Lists all known templates

Print a list of all templates known to this moa installation. This includes locally installed templates as well.

```
moa.plugin.system.template.refresh(job, args)
```

Refresh the template

Reload the template from the original repository.

test - Run unitests

umaks - Sets umaks for the moa process

varInject - Inject variables into this job

2.9.12 Yaco

Yaco provides a `dict` like structure that can be serialized to & from `yaml`. Yaco objects behave as dictionaries but also allow attribute access (loosely based on this `recipe <
Sublevel dictionaries are automatically converted to Yaco objects, allowing sublevel attribute access, for example:

```python
>>> x = Yaco()
>>> x.test = 1
>>> x.sub.test = 2
>>> x.sub.test
2
```

Note that sub-dictionaries do not need to be initialized. This has as a consequence that requesting uninitialized items automatically return an empty Yaco object (inherited from a dictionary).

Yaco can be found in the Python package index and is also part of the Moa source distribution.

Autogenerating keys

An important feature (or annoyance) of Yaco is the auto generation of keys that are not present (yet). For example:

```python
>>> x = Yaco()
>>> x.a.b.c.d = 1
>>> assert (x.a.b.c.d == 1)
```

works - *a*, *b* and *c* are assumed to be Yaco dictionaries and *d* is give value 1. This makes populating data structures easy.

It might also generate some confusion when querying for keys in the Yaco structure - if a key does not exists, it automatically comes back as an empty dict or Yaco object (renders as `{}`). This means that if it is easy to check if a certain ‘branch’ of a Yaco datastructure exists:

```python
>>> x = Yaco()
>>> assert (not x.a.b)
>>> assert (x.a.has_key('b'))
```

but now the following works as well:

```python
>>> assert (x.has_key('a'))
>>> assert (x.a.has_key('a'))
```

So, a safe way to test a data structure, without introducing extra branches is:

```python
>>> x = Yaco()
>>> assert (not x.has_key('a'))
```

Todo: Need to find a more elegant way of testing without introducing data structures

```python
class Yaco(
    data={}
)
```

Rather loosely based on http://code.activestate.com/recipes/473786/ (r1)

```python
>>> v = Yaco()
>>> v.a = 1
>>> assert (v.a == 1)
>>> assert (v['a'] == 1)
>>> v = Yaco({'a':1})
>>> assert (v.a == 1)
>>> assert (v['a'] == 1)
```

```python
def get_data()
    Prepare & parse data for export
```
>>> y = Yaco()
>>> y.a = 1
>>> y.b = 2
>>> y._c = 3
>>> assert (y._c == 3)
>>> d = y.get_data()
>>> assert (d.has_key('a') == True)
>>> assert (d.has_key('b') == True)
>>> assert (d.has_key('_c') == False)

>>> y._private = ['b']
>>> d = y.get_data()
>>> assert (d.has_key('a') == True)
>>> assert (d.has_key('b') == False)
>>> assert (d.has_key('_c') == False)

load (from_file)
Load this dict from_file

>>> import yaml
>>> import tempfile

>>> tf = tempfile.NamedTemporaryFile(delete=False)
>>> tf.write(yaml.dump({'a' : [1,2,3, [1,2,3, {'d' : 4}]], 'b' : 4, 'c' : 5})))
>>> tf.close()
>>> y = Yaco()
>>> y.load(tf.name)

>>> assert (y.a[3][3].d == 4)

pretty ()
Return data as a pprint.pformatted string

save (to_file, doNotSave=[])

simple ()
return a simplified representation of this Yaco struct - remove Yaco from the equation - and all object reference. Leave only bool, float, str, lists, tuples and dicts

>>> x = Yaco()
>>> x.y.z = 1
>>> assert (isinstance(x.y, Yaco))
>>> s = x.simple()
>>> assert (s['y'][z] == 1)

update (data)

>>> v = Yaco({‘a’ : [1,2,3,{'b' : 12}]})
>>> assert (v.a[3].b == 12)

>>> v = Yaco({‘a’ : [1,2,3,[1,{'b' : 12}]]})
>>> assert (v.a[3][1].b == 12)

2.9.13 Filesets

Filesets
Handle & manipulate sets of files

This module aims at providing classes to handle and manipulate sets of files. Two simple examples are a simple set containing one file (fist.fistSingle) or a glob based set of files (fist.fistFileset). A more complicated example is fistMapset that maps another fileset based on a pattern.

Each fileset inherits from list - hence fist filesets behave as lists.

Future work should allow the definition of remote filesets (for example over http or ssh).

Each fist class is instantiated with a url defining the file(set). In the case of fist.fistFileset this url contains a globbing characters:

```python
fs = fist.fistFileset('/tmp/*,txt')
```

This fileset object contains a list with all *.txt files in /tmp. Subsequently it is possible to map this set

```python
class fist.fistCore (url, context=None)
    Core class for all fist classes
    resolve()
    This function needs to be overridden context

class fist.fistFileset (url, context=None)
    Most basic set of files - handle a set of files described by a single URI with wildcards, for example:

    * '*.txt'
    * '.../*.txt'
    * 'file://home/name/data/*.txt'

    >>> f = fistFileset('*.txt')
    >>> assert (f.path=='.')
    >>> assert (f.glob=='*.txt')
    >>> assert (f.path=='.')
    >>> assert (f.glob=='*.txt')
    >>> fs = fist.fistFileset('/tmp/*.txt')
    >>> assert (f.path=='/tmp')
    >>> assert (f.glob=='*.txt')
    >>> fs = fist.fistFileset('../*.txt')
    >>> assert (f.path=='..')
    >>> assert (f.glob=='*.txt')
    >>> fs = fist.fistFileset(os.path.join(wd, 'in', '*.txt'))
    >>> assert (f.path==os.path.join(wd, 'in'))
    >>> assert (f.glob=='*.txt')
```

```python
class fist.fistMapset (url, context=None)
    fistMapset
    Map set - map a fileset based on a target uri
```
>>> f = fistFileset(os.path.join(wd, 'in', '*'))
>>> f.resolve()
>>> **assert** (len(f) == 100)
>>> **##**
>>> **##** Null mapping
>>> **##**
>>> m = fistMapset('*/*')
>>> m.resolve(f)
>>> **assert** (len(m) == 100)
>>> **assert** (os.path.join(wd, 'in/in18.txt') in m)
>>> **##**
>>> **##** simple folder mapping
>>> **##**
>>> m = fistMapset('out/*')
>>> m.resolve(f)
>>> **assert** (len(m) == 100)
>>> **assert** ('out/in18.txt' in m)
>>> **##**
>>> **##** simple folder mapping
>>> **##**
>>> m = fistMapset('./*')
>>> m.resolve(f)
>>> **assert** (len(m) == 100)
>>> **assert** ('./in18.txt' in m)
>>> **##**
>>> **##** simple folder & mapping & extension append
>>> **##**
>>> m = fistMapset('out/*.out')
>>> m.resolve(f)
>>> **assert** (len(m) == 100)
>>> **assert** ('out/in18.txt.out' in m)
>>> **##**
>>> **##** New from fileset - now with a pattern defining the extension
>>> **##**
>>> f = fistFileset(os.path.join(wd, 'in', '*.txt'))
>>> f.resolve()
>>> **##**
>>> **##** extension mapping
>>> **##**
>>> m = fistMapset('out/*.out')
>>> m.resolve(f)
>>> **assert** (len(m) == 100)
>>> **assert** ('out/in18.out' in m)
>>> **##**
>>> **##** New from fileset - now with a pattern defining file glob &
>>> **##** extension
>>> **##**
>>> f = fistFileset(os.path.join(wd, 'in', 'in*.txt'))
>>> f.resolve()
>>> **##**
>>> **##** more complex filename mapping
>>> **##**
>>> m = fistMapset('out/test*.out')
>>> m.resolve(f)
>>> **assert** (len(m) == 100)
>>> **assert** ('out/test18.out' in m)
>>> **##**
mapping keeping the extension the same

```python
>>> m = fistMapset('out/test*.txt')
>>> m.resolve(f)
>>> assert(len(m) == 100)
>>> assert('out/test18.txt' in m)
```

resolve *(mapFrom)*
Resolve the mapped set based on a input fileSet

resolver *(mapFrom, list)*
map all files in the incoming list

class fist.fistSingle *(url, context=None)*
Represents a single file

init *
Assuming the url is a single file
CHAPTER THREE

MORE INFORMATION
INDICES AND TABLES

- genindex
- modindex
- search
f
fist, 162

m
moa.actor, 147
moa.backend.ruff, 153
moa.commands, 148
moa.job, 148
moa.jobConf, 150
moa.plugin.job.metavar, 154
moa.plugin.system.adhoc, 155
moa.plugin.system.configure, 156
moa.plugin.system.doc, 156
moa.plugin.system.extraCommands, 157
moa.plugin.system.filesset, 158
moa.plugin.system.help, 158
moa.plugin.system.info, 158
moa.plugin.system.lock, 158
moa.plugin.system.logger, 158
moa.plugin.system.moautil, 159
moa.plugin.system.newjob, 159
moa.plugin.system.parameterCheck, 159
moa.plugin.system.project, 159
moa.plugin.system.status, 160
moa.plugin.system.template, 160
moa.plugin.system.test, 160
moa.plugin.system.umask, 160
moa.plugin.system.varInject, 160
moa.sysConf, 151
moa.template, 152
moa.template.provider.core, 153
moa.template.template, 153
moa.ui, 151
moa.utils, 151

y
Yaco, 160
I
init() (fist.fistSingle method), 165
initialize() (moa.job.Job method), 149
initTemplate() (in module moa.template), 152
installTemplate() (in module moa.template), 152
isEmpty() (moa.jobConf.JobConf method), 151
isMoa() (moa.job.Job method), 149
isPrivate() (moa.jobConf.JobConf method), 151

J
Job (class in moa.job), 148
JobConf (class in moa.jobConf), 150

K
keys() (moa.jobConf.JobConf method), 151
kill() (in module moa.plugin.system.status), 160

L
list() (in module moa.plugin.system.template), 160
load() (moa.jobConf.JobConf method), 151
load() (Yaco.Yaco method), 162
loadBackend() (moa.job.Job method), 149
loadTemplate() (moa.job.Job method), 149
loadTemplateMeta() (moa.job.Job method), 149
lock() (in module moa.plugin.system.lock), 158
log() (in module moa.plugin.system.logger), 158

M
moa.actor (module), 147
moa.backend.ruff (module), 153
moa.commands (module), 148
moa.job (module), 148
moa.jobConf (module), 150
moa.plugin.job.metavar (module), 154
moa.plugin.system.adhoc (module), 155
moa.plugin.system.configure (module), 156
moa.plugin.system.doc (module), 156
moa.plugin.system.extraCommands (module), 157
moa.plugin.system.fileset (module), 158
moa.plugin.system.help (module), 158
moa.plugin.system.info (module), 158
moa.plugin.system.lock (module), 158
moa.plugin.system.logger (module), 158
moa.plugin.system.moautil (module), 159
moa.plugin.system.newjob (module), 159
moa.plugin.system.parameterCheck (module), 159
moa.plugin.system.project (module), 159
moa.plugin.system.status (module), 160
moa.plugin.system.template (module), 160
moa.plugin.system.test (module), 160
moa.plugin.system.umask (module), 160
moa.plugin.system.varInject (module), 160
moa.sysConf (module), 151
moa.template (module), 152
moa.template.provider.core (module), 153
moa.template.template (module), 153
moa.ui (module), 151
moa.utils (module), 151
moaDirOrExit() (in module moa.utils), 152
mv() (in module moa.plugin.system.moautil), 159

N
call() (fist.fistCore method), 163
call() (fist.fistMapset method), 165
call() (Yaco.Yaco method), 162

setRecursiveVar() (moa.jobConf.JobConf method), 151
setTemplate() (moa.job.Job method), 150
show() (in module moa.plugin.system.configure), 156
simple() (in module moa.plugin.system.adhoc), 156
simple() (Yaco.Yaco method), 162
simple_decorator() (in module moa.utils), 152
simpleRunner() (in module moa.actor), 147
status() (in module moa.plugin.system.status), 160

T
Template (class in moa.template.template), 153
templateHelp() (in module moa.plugin.system.help), 158
test() (in module moa.plugin.system.parameterCheck), 159
tree() (in module moa.plugin.system.info), 158

U
unlock() (in module moa.plugin.system.lock), 158
unset() (in module moa.plugin.system.configure), 156
update() (Yaco.Yaco method), 162

V
version() (in module moa.plugin.system.info), 158

W
welcome() (in module moa.plugin.system.help), 158

Y
Yaco (class in Yaco), 161
Yaco (module), 160